Suppr超能文献

通过拟共形映射进行视网膜拓扑映射的微分同胚配准

DIFFEOMORPHIC REGISTRATION FOR RETINOTOPIC MAPPING VIA QUASICONFORMAL MAPPING.

作者信息

Tu Yanshuai, Ta Duyan, Gu Xianfeng David, Lu Zhong-Lin, Wang Yalin

机构信息

School of Computing, Informatics, Decision Systems Engineering, Arizona State Univ., Tempe, AZ.

Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:687-691. doi: 10.1109/isbi45749.2020.9098386. Epub 2020 May 22.

Abstract

Human visual cortex is organized into several functional regions/areas. Identifying these visual areas of the human brain (i.e., V1, V2, V4, etc) is an important topic in neurophysiology and vision science. Retinotopic mapping via functional magnetic resonance imaging (fMRI) provides a non-invasive way of defining the boundaries of the visual areas. It is well known from neurophysiology studies that retinotopic mapping is diffeomorphic within each local area (i.e. locally smooth, differentiable, and invertible). However, due to the low signal-noise ratio of fMRI, the retinotopic maps from fMRI are often not diffeomorphic, making it difficult to delineate the boundaries of visual areas. The purpose of this work is to generate diffeomorphic retinotopic maps and improve the accuracy of the retinotopic atlas from fMRI measurements through the development of a specifically designed registration procedure. Although there are sophisticated existing cortical surface registration methods, most of them cannot fully utilize the features of retinotopic mapping. By considering unique retinotopic mapping features, we form a quasiconformal geometry-based registration model and solve it with efficient numerical methods. We compare our registration with several popular methods on synthetic data. The results demonstrate that the proposed registration is superior to conventional methods for the registration of retinotopic maps. The application of our method to a real retinotopic mapping dataset also results in much smaller registration errors.

摘要

人类视觉皮层被组织成几个功能区域。识别大脑的这些视觉区域(即V1、V2、V4等)是神经生理学和视觉科学中的一个重要课题。通过功能磁共振成像(fMRI)进行的视网膜拓扑映射提供了一种非侵入性的方法来定义视觉区域的边界。从神经生理学研究中可知,视网膜拓扑映射在每个局部区域内是微分同胚的(即局部平滑、可微且可逆)。然而,由于fMRI的信噪比低,fMRI的视网膜拓扑图通常不是微分同胚的,这使得难以描绘视觉区域的边界。这项工作的目的是通过开发一种专门设计的配准程序来生成微分同胚的视网膜拓扑图,并提高fMRI测量的视网膜拓扑图谱的准确性。尽管现有的皮层表面配准方法很复杂,但大多数方法不能充分利用视网膜拓扑映射的特征。通过考虑独特的视网膜拓扑映射特征,我们形成了一个基于拟共形几何的配准模型,并用高效的数值方法求解。我们在合成数据上比较了我们的配准方法与几种流行方法。结果表明,所提出的配准方法在视网膜拓扑图配准方面优于传统方法。我们的方法应用于真实的视网膜拓扑映射数据集也导致配准误差小得多。

相似文献

1
DIFFEOMORPHIC REGISTRATION FOR RETINOTOPIC MAPPING VIA QUASICONFORMAL MAPPING.通过拟共形映射进行视网膜拓扑映射的微分同胚配准
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:687-691. doi: 10.1109/isbi45749.2020.9098386. Epub 2020 May 22.
2
DIFFEOMORPHIC SMOOTHING FOR RETINOTOPIC MAPPING.用于视网膜拓扑映射的微分同胚平滑
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:534-538. doi: 10.1109/isbi45749.2020.9098316. Epub 2020 May 22.
3
Diffeomorphic registration for retinotopic maps of multiple visual regions.多视觉区域视网膜图的变形配准。
Brain Struct Funct. 2022 May;227(4):1507-1522. doi: 10.1007/s00429-022-02480-3. Epub 2022 Mar 24.
5
Topology-preserving smoothing of retinotopic maps.保持拓扑结构的视网膜映射平滑处理。
PLoS Comput Biol. 2021 Aug 2;17(8):e1009216. doi: 10.1371/journal.pcbi.1009216. eCollection 2021 Aug.
6
ENHANCING 3T RETINOTOPIC MAPS USING DIFFEOMORPHIC REGISTRATION.使用微分同胚配准增强3T视网膜地形图
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635556. Epub 2024 Aug 22.
8
Topological Receptive Field Model for Human Retinotopic Mapping.用于人类视网膜定位映射的拓扑感受野模型
Med Image Comput Comput Assist Interv. 2021;12907:639-649. doi: 10.1007/978-3-030-87234-2_60. Epub 2021 Sep 21.

引用本文的文献

1
Diffeomorphic registration for retinotopic maps of multiple visual regions.多视觉区域视网膜图的变形配准。
Brain Struct Funct. 2022 May;227(4):1507-1522. doi: 10.1007/s00429-022-02480-3. Epub 2022 Mar 24.
2
Topological Receptive Field Model for Human Retinotopic Mapping.用于人类视网膜定位映射的拓扑感受野模型
Med Image Comput Comput Assist Interv. 2021;12907:639-649. doi: 10.1007/978-3-030-87234-2_60. Epub 2021 Sep 21.
4
Topology-preserving smoothing of retinotopic maps.保持拓扑结构的视网膜映射平滑处理。
PLoS Comput Biol. 2021 Aug 2;17(8):e1009216. doi: 10.1371/journal.pcbi.1009216. eCollection 2021 Aug.

本文引用的文献

2
Bayesian analysis of retinotopic maps.贝叶斯分析视皮层图谱。
Elife. 2018 Dec 6;7:e40224. doi: 10.7554/eLife.40224.
3
The minimal preprocessing pipelines for the Human Connectome Project.人类连接组计划的最小预处理管道。
Neuroimage. 2013 Oct 15;80:105-24. doi: 10.1016/j.neuroimage.2013.04.127. Epub 2013 May 11.
5
Imaging retinotopic maps in the human brain.绘制人类大脑中的视网膜地形图。
Vision Res. 2011 Apr 13;51(7):718-37. doi: 10.1016/j.visres.2010.08.004. Epub 2010 Aug 6.
7
Diffeomorphic demons: efficient non-parametric image registration.微分同胚恶魔算法:高效的非参数图像配准
Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.
8
Population receptive field estimates in human visual cortex.人类视觉皮层中的群体感受野估计
Neuroimage. 2008 Jan 15;39(2):647-60. doi: 10.1016/j.neuroimage.2007.09.034. Epub 2007 Sep 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验