Suppr超能文献

微分同胚恶魔算法:高效的非参数图像配准

Diffeomorphic demons: efficient non-parametric image registration.

作者信息

Vercauteren Tom, Pennec Xavier, Perchant Aymeric, Ayache Nicholas

机构信息

Mauna Kea Technologies, 9 rue d'Enghien, 75010 Paris, France.

出版信息

Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.

Abstract

We propose an efficient non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. We provide strong theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage for the symmetric forces variant of the demons algorithm. We show on controlled experiments that this advantage is confirmed in practice and yields a faster convergence. In the second part of this paper, we adapt the optimization procedure underlying the demons algorithm to a space of diffeomorphic transformations. In contrast to many diffeomorphic registration algorithms, our solution is computationally efficient since in practice it only replaces an addition of displacement fields by a few compositions. Our experiments show that in addition to being diffeomorphic, our algorithm provides results that are similar to the ones from the demons algorithm but with transformations that are much smoother and closer to the gold standard, available in controlled experiments, in terms of Jacobians.

摘要

我们提出了一种基于蒂里翁(Thirion)的恶魔算法的高效非参数微分同胚图像配准算法。在本文的第一部分,我们表明蒂里翁的恶魔算法可被视为位移场整个空间上的优化过程。我们为蒂里翁恶魔算法的不同变体提供了坚实的理论基础。该分析预测了恶魔算法对称力变体的理论优势。我们在对照实验中表明,这一优势在实际中得到了证实,并产生了更快的收敛速度。在本文的第二部分,我们将恶魔算法背后的优化过程应用于微分同胚变换空间。与许多微分同胚配准算法不同,我们的解决方案在计算上是高效的,因为在实际中它只需通过几次合成来替代位移场的加法。我们的实验表明,除了具有微分同胚性之外,我们的算法所提供的结果与恶魔算法的结果相似,但就雅可比行列式而言,其变换更加平滑,且更接近对照实验中可用的金标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验