Department of Biostatistics, University of North Carolina, McGavran-Greenberg Hall, CB #7420, Chapel Hill, NC 27599, USA.
Biostatistics. 2023 Apr 14;24(2):262-276. doi: 10.1093/biostatistics/kxab027.
Multiregional clinical trials (MRCTs) provide the benefit of more rapidly introducing drugs to the global market; however, small regional sample sizes can lead to poor estimation quality of region-specific effects when using current statistical methods. With the publication of the International Conference for Harmonisation E17 guideline in 2017, the MRCT design is recognized as a viable strategy that can be accepted by regional regulatory authorities, necessitating new statistical methods that improve the quality of region-specific inference. In this article, we develop a novel methodology for estimating region-specific and global treatment effects for MRCTs using Bayesian model averaging. This approach can be used for trials that compare two treatment groups with respect to a continuous outcome, and it allows for the incorporation of patient characteristics through the inclusion of covariates. We propose an approach that uses posterior model probabilities to quantify evidence in favor of consistency of treatment effects across all regions, and this metric can be used by regulatory authorities for drug approval. We show through simulations that the proposed modeling approach results in lower MSE than a fixed-effects linear regression model and better control of type I error rates than a Bayesian hierarchical model.
多地区临床试验(MRCTs)提供了将药物更快推向全球市场的好处;然而,当使用当前的统计方法时,小区域样本量可能导致对特定区域效果的估计质量较差。随着 2017 年国际协调会议 E17 指南的发布,MRCT 设计被认为是一种可行的策略,可以被地区监管机构接受,这需要新的统计方法来提高特定区域推断的质量。在本文中,我们开发了一种使用贝叶斯模型平均法估计 MRCT 中特定区域和全球治疗效果的新方法。这种方法可用于比较两种治疗组在连续结果方面的试验,并且可以通过包含协变量来纳入患者特征。我们提出了一种使用后验模型概率来量化所有地区治疗效果一致性证据的方法,该方法可由监管机构用于药物批准。我们通过模拟表明,所提出的建模方法导致均方误差(MSE)低于固定效应线性回归模型,并且比贝叶斯层次模型更好地控制了 I 型错误率。