Suppr超能文献

Role of suction pressure in the stability of a gravity-driven thermoviscous liquid film flow down the interior surface of a cylinder.

作者信息

Kishal Divij, Tiwari Naveen

机构信息

Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.

出版信息

Eur Phys J E Soft Matter. 2021 Jul 22;44(7):100. doi: 10.1140/epje/s10189-021-00103-z.

Abstract

This study aims to analyze the stability of a gravity-driven thin film flow in the heated/cooled interior surface of a vertical hollow cylinder. The model development involves simplifying the flow and energy equations using the usual thin-film approximation, where the average film thickness is considered to be much smaller than the radius of cylinder. A dispersion relation is then derived to study the temporal stability of the system in order to quantify the effect of various non-dimensional parameters present in the model, such as the thermoviscous number, Marangoni number, Biot number, and Bond number. Another non-dimensional parameter is introduced by considering an opposing suction pressure in the annulus region. The thermocapillary stress and the thermoviscous effect are shown to strongly affect the temporal stability of the flow. It is shown that although the suction pressure affects the velocity profile of the flow, it does not affect the temporal stability results. The suction pressure is then shown to have some effect on the spatiotemporal stability. Critical condition is presented for the transition between absolutely and convectively unstable systems, and parameter regimes are presented to quantify the effect of the above-mentioned parameters.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验