Suppr超能文献

整合系统和分子水平,推断维持代谢适应的关键驱动因素。

Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations.

机构信息

Department of Biochemistry and Molecular Biomedicine & Institute of Biomedicine of Universitat de Barcelona, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.

Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) and Metabolomics node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.

出版信息

PLoS Comput Biol. 2021 Jul 23;17(7):e1009234. doi: 10.1371/journal.pcbi.1009234. eCollection 2021 Jul.

Abstract

Metabolic adaptations to complex perturbations, like the response to pharmacological treatments in multifactorial diseases such as cancer, can be described through measurements of part of the fluxes and concentrations at the systemic level and individual transporter and enzyme activities at the molecular level. In the framework of Metabolic Control Analysis (MCA), ensembles of linear constraints can be built integrating these measurements at both systemic and molecular levels, which are expressed as relative differences or changes produced in the metabolic adaptation. Here, combining MCA with Linear Programming, an efficient computational strategy is developed to infer additional non-measured changes at the molecular level that are required to satisfy these constraints. An application of this strategy is illustrated by using a set of fluxes, concentrations, and differentially expressed genes that characterize the response to cyclin-dependent kinases 4 and 6 inhibition in colon cancer cells. Decreases and increases in transporter and enzyme individual activities required to reprogram the measured changes in fluxes and concentrations are compared with down-regulated and up-regulated metabolic genes to unveil those that are key molecular drivers of the metabolic response.

摘要

对复杂扰动(如多因素疾病(如癌症)的药物治疗反应)的代谢适应可以通过测量系统水平的部分通量和浓度以及分子水平的个体转运体和酶活性来描述。在代谢控制分析(MCA)的框架内,可以构建集成这些系统和分子水平测量的线性约束集合,这些约束以代谢适应产生的相对差异或变化来表示。在这里,通过将 MCA 与线性规划相结合,开发了一种有效的计算策略,以推断满足这些约束所需的分子水平上的其他未测量变化。通过使用一组通量、浓度和差异表达基因来描述结肠癌细胞中细胞周期蛋白依赖性激酶 4 和 6 抑制的反应,说明了该策略的应用。为了重新编程通量和浓度的测量变化,需要降低和增加转运体和酶的个体活性,将其与下调和上调的代谢基因进行比较,以揭示那些是代谢反应的关键分子驱动因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验