Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.
Department of Pathology, United States; Biochemistry, Case Western Reserve University, Cleveland, OH, United States.
Exp Eye Res. 2021 Sep;210:108705. doi: 10.1016/j.exer.2021.108705. Epub 2021 Jul 20.
Crystallins, the most prevalent lens proteins, have no turnover throughout the entire human lifespan. These long-lived proteins are susceptible to post-synthetic modifications, including oxidation and glycation, which are believed to be some of the primary mechanisms for age-related cataractogenesis. Thanks to high glutathione (GSH) and ascorbic acid (ASA) levels as well as low oxygen content, the human lens is able to maintain its transparency for several decades. Aging accumulates substantial changes in the human lens, including a decreased glutathione concentration, increased reactive oxygen species (ROS) formation, impaired antioxidative defense capacity, and increased redox-active metal ions, which induce glucose and ascorbic acid degradation and protein glycation. The glycated lens crystallins are either prone to UVA mediated free radical production or they attract metal ion binding, which can trigger additional protein oxidation and modification. This vicious cycle is expected to be exacerbated with older age or diabetic conditions. ASA serves as an antioxidant in the human lens under reducing conditions to protect the human lens from damage, but ASA converts to the pro-oxidative role and causes lens protein damage by ascorbylation in high oxidation or enriched redox-active metal ion conditions. This review is dedicated in honor of Dr. Frank Giblin, a great friend and superb scientist, whose pioneering and relentless work over the past 45 years has provided critical insight into lens redox regulation and glutathione homeostasis during aging and cataractogenesis.
晶体蛋白是最普遍存在的晶状体蛋白,在整个人的生命周期中都不会更新。这些长寿蛋白易受到翻译后修饰,包括氧化和糖化,这被认为是与年龄相关的白内障形成的主要机制之一。由于高谷胱甘肽 (GSH) 和抗坏血酸 (ASA) 水平以及低氧含量,人类晶状体能够保持几十年的透明度。随着年龄的增长,人类晶状体会积累大量变化,包括谷胱甘肽浓度降低、活性氧 (ROS) 形成增加、抗氧化防御能力受损以及氧化还原活性金属离子增加,这些变化会导致葡萄糖和抗坏血酸降解以及蛋白质糖化。糖化的晶状体晶体蛋白要么容易受到 UVA 介导的自由基产生的影响,要么容易吸引金属离子结合,这可能引发额外的蛋白质氧化和修饰。这种恶性循环预计会随着年龄的增长或糖尿病状况而加剧。ASA 在还原条件下作为人类晶状体中的抗氧化剂,以保护人类晶状体免受损伤,但在高氧化或富含氧化还原活性金属离子的条件下,ASA 会转化为促氧化剂,并通过抗坏血酸化引起晶状体蛋白损伤。这篇综述是为了纪念 Frank Giblin 博士而写的,他是一位伟大的朋友和杰出的科学家,他在过去 45 年的开创性和不懈工作为晶状体氧化还原调节和谷胱甘肽稳态提供了关键的见解,这些研究涉及衰老和白内障形成。