Suppr超能文献

用于预测药物组合体内性能的新的体外-计算方法。

New In Vitro-In Silico Approach for the Prediction of In Vivo Performance of Drug Combinations.

机构信息

OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.

Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.

出版信息

Molecules. 2021 Jul 13;26(14):4257. doi: 10.3390/molecules26144257.

Abstract

Pharmacokinetic (PK) studies improve the design of dosing regimens in preclinical and clinical settings. In complex diseases like cancer, single-agent approaches are often insufficient for an effective treatment, and drug combination therapies can be implemented. In this work, in silico PK models were developed based on in vitro assays results, with the goal of predicting the in vivo performance of drug combinations in the context of cancer therapy. Combinations of reference drugs for cancer treatment, gemcitabine and 5-fluorouracil (5-FU), and repurposed drugs itraconazole, verapamil or tacrine, were evaluated in vitro. Then, two-compartment PK models were developed based on the previous in vitro studies and on the PK profile reported in the literature for human patients. Considering the quantification parameter area under the dose-response-time curve (AUC) for the combinations effect, itraconazole was the most effective in combination with either reference anticancer drugs. In addition, cell growth inhibition was itraconazole-dose dependent and an increase in effect was predicted if itraconazole administration was continued (24-h dosing interval). This work demonstrates that in silico methods and AUC are powerful tools to study relationships between tissue drug concentration and the percentage of cell growth inhibition over time.

摘要

药代动力学(PK)研究可改善临床前和临床环境下的给药方案设计。在癌症等复杂疾病中,单一药物治疗方法通常不足以进行有效治疗,因此可以实施药物联合治疗。在这项工作中,我们根据体外检测结果开发了基于计算的 PK 模型,旨在预测癌症治疗中药物组合的体内性能。评估了用于癌症治疗的参考药物吉西他滨和 5-氟尿嘧啶(5-FU),以及伊曲康唑、维拉帕米或他克林等重新利用药物的体外组合。然后,我们基于之前的体外研究和文献中报告的人类患者 PK 特征,开发了两室 PK 模型。考虑到组合效应的剂量反应时间曲线下面积(AUC)等定量参数,伊曲康唑与任何一种参考抗癌药物联合使用时效果最佳。此外,细胞生长抑制与伊曲康唑剂量呈依赖性,并且如果继续给予伊曲康唑(24 小时给药间隔),则预计会增加效果。这项工作表明,计算方法和 AUC 是研究组织药物浓度与随时间变化的细胞生长抑制百分比之间关系的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a563/8304213/d21a35bcac1c/molecules-26-04257-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验