Suppr超能文献

采用 CO 作为溶剂的多级逆流吸收/汽提模拟有机液体产品脱氧:热力学数据基础和状态方程建模。

Simulation of Organic Liquid Products Deoxygenation by Multistage Countercurrent Absorber/Stripping Using CO as Solvent with Aspen-HYSYS: Thermodynamic Data Basis and EOS Modeling.

机构信息

Graduate Program of Natural Resources Engineering of Amazon, Rua Corrêa N° 1, Campus Profissional-UFPA, Belém 66075-110, Pará, Brazil.

Graduate Program of Chemical Engineering, Rua Corrêa N° 1, Campus Profissional-UFPA, Belém 66075-110, Pará, Brazil.

出版信息

Molecules. 2021 Jul 20;26(14):4382. doi: 10.3390/molecules26144382.

Abstract

In this work, the thermodynamic data basis and equation of state (EOS) modeling necessary to simulate the fractionation of organic liquid products (OLP), a liquid reaction product obtained by thermal catalytic cracking of palm oil at 450 °C, 1.0 atmosphere, with 10% (wt.) NaCO as catalyst, in multistage countercurrent absorber/stripping columns using supercritical carbon dioxide (SC-CO) as solvent, with Aspen-HYSYS was systematically investigated. The chemical composition of OLP was used to predict the density (ρ), boiling temperature (T), critical temperature (T), critical pressure (P), critical volume (V), and acentric factor (ω) of all the compounds present in OLP by applying the group contribution methods of Marrero-Gani, Han-Peng, Marrero-Pardillo, Constantinou-Gani, Joback and Reid, and Vetere. The RK-Aspen EOS used as thermodynamic fluid package, applied to correlate the experimental phase equilibrium data of binary systems OLP-/CO available in the literature. The group contribution methods selected based on the lowest relative average deviation by computing T, T, P, V, and ω. For -alkanes, the method of Marrero-Gani selected for the prediction of T, P and V, and that of Han-Peng for ω. For alkenes, the method of Marrero-Gani selected for the prediction of T and T, Marrero-Pardillo for P and V, and Han-Peng for ω. For unsubstituted cyclic hydrocarbons, the method of Constantinou-Gani selected for the prediction of T, Marrero-Gani for T, Joback for P and V, and the undirected method of Vetere for ω. For substituted cyclic hydrocarbons, the method of Constantinou-Gani selected for the prediction of T and P, Marrero-Gani for T and V, and the undirected method of Vetere for ω. For aromatic hydrocarbon, the method of Joback selected for the prediction of T, Constantinou-Gani for T and V, Marrero-Gani for P, and the undirected method of Vetere for ω. The regressions show that RK-Aspen EOS was able to describe the experimental phase equilibrium data for all the binary pairs undecane-CO, tetradecane-CO, pentadecane-CO, hexadecane-CO, octadecane-CO, palmitic acid-CO, and oleic acid-CO, showing average absolute deviation for the liquid phase (AADx) between 0.8% and 1.25% and average absolute deviation for the gaseous phase (AADy) between 0.01% to 0.66%.

摘要

在这项工作中,系统研究了使用超临界二氧化碳(SC-CO2)作为溶剂,在多段逆流吸收/汽提塔中分离有机液体产物(OLP)的热力学数据基础和状态方程(EOS)建模,OLP 是通过在 450°C、1.0 大气压下用 10%(wt.)NaCO 作为催化剂对棕榈油进行热催化裂化得到的液体反应产物。使用 Aspen-HYSYS,以预测 OLP 中所有化合物的密度(ρ)、沸点(T)、临界温度(T)、临界压力(P)、临界体积(V)和偏心因子(ω)为目标,使用 Marrero-Gani、Han-Peng、Marrero-Pardillo、 Constantinou-Gani、Joback 和 Reid 的基团贡献方法,对 OLP 的化学成分进行了预测。所选的 RK-Aspen EOS 作为热力学流体包,用于关联文献中可用的二元体系 OLP-/CO 的实验相平衡数据。根据计算 T、T、P、V 和 ω 的最低相对平均偏差,选择了基于基团贡献的方法。对于 -烷烃,选择 Marrero-Gani 方法用于预测 T、P 和 V,Han-Peng 方法用于预测 ω。对于烯烃,选择 Marrero-Gani 方法用于预测 T 和 T,Marrero-Pardillo 方法用于预测 P 和 V,Han-Peng 方法用于预测 ω。对于未取代的环状烃,选择 Constantinou-Gani 方法用于预测 T,Marrero-Gani 方法用于预测 T,Joback 方法用于预测 P 和 V,Vetere 无向方法用于预测 ω。对于取代的环状烃,选择 Constantinou-Gani 方法用于预测 T 和 P,Marrero-Gani 方法用于预测 T 和 V,Vetere 无向方法用于预测 ω。对于芳烃,选择 Joback 方法用于预测 T, Constantinou-Gani 方法用于预测 T 和 V,Marrero-Gani 方法用于预测 P,Vetere 无向方法用于预测 ω。回归表明,RK-Aspen EOS 能够描述所有二元对十一烷-CO、十四烷-CO、十五烷-CO、十六烷-CO、十八烷-CO、棕榈酸-CO 和油酸-CO 的实验相平衡数据,液相平均绝对偏差(AADx)在 0.8%至 1.25%之间,气相平均绝对偏差(AADy)在 0.01%至 0.66%之间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1cc/8307044/6969ecbc26dc/molecules-26-04382-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验