Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", Via S. Sofia 78, 95123 Catania, Italy.
Istituto per la Microelettronica e Microsistemi-Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy.
Int J Environ Res Public Health. 2021 Jul 16;18(14):7580. doi: 10.3390/ijerph18147580.
Conventional high throughput methods assaying the chemical state of water and the risk of heavy metal accumulation share common constraints of long and expensive analytical procedures and dedicated laboratories due to the typical bulky instrumentation. To overcome these limitations, a miniaturized optical system for the detection and quantification of inorganic mercury (Hg) in water was developed. Combining the bioactivity of a light-emitting mercury-specific engineered -used as sensing element-with the optical performance of small size and inexpensive Silicon Photomultiplier (SiPM)-used as detector-the system is able to detect mercury in low volumes of water down to the concentration of 1 µg L, which is the tolerance value indicated by the World Health Organization (WHO), providing a highly sensitive and miniaturized tool for in situ water quality analysis.
传统的高通量方法检测水的化学状态和重金属积累的风险,由于典型的大型仪器,存在分析过程冗长和昂贵以及需要专用实验室的共同限制。为了克服这些限制,开发了一种用于检测和定量水中无机汞 (Hg) 的微型化光学系统。该系统将发光汞特异性工程生物的生物活性(用作传感元件)与小尺寸和低成本硅光电倍增管 (SiPM) 的光学性能相结合(用作探测器),能够检测低体积水中的汞,浓度低至 1 µg L,这是世界卫生组织 (WHO) 规定的耐受值,为原位水质分析提供了一种高灵敏度和微型化的工具。