Suppr超能文献

在具有粘弹性界面的爆发泡中开花。

Flowering in bursting bubbles with viscoelastic interfaces.

机构信息

Dipartimento di Ingegneria Chimica, Materiali e della Produzione Industriale, University of Naples Federico II, I-80125 Napoli, Italy.

Department of Chemical Engineering, Stanford University, Stanford, CA 94305.

出版信息

Proc Natl Acad Sci U S A. 2021 Jul 27;118(30). doi: 10.1073/pnas.2105058118.

Abstract

The lifetime of bubbles, from formation to rupture, attracts attention because bubbles are often present in natural and industrial processes, and their geometry, drainage, coarsening, and rupture strongly affect those operations. Bubble rupture happens rapidly, and it may generate a cascade of small droplets or bubbles. Once a hole is nucleated within a bubble, it opens up with a variety of shapes and velocities depending on the liquid properties. A range of bubble rupture modes are reported in literature in which the reduction of a surface energy drives the rupture against inertial and viscous forces. The role of surface viscoelasticity of the liquid film in this colorful scenario is, however, still unknown. We found that the presence of interfacial viscoelasticity has a profound effect in the bubble bursting dynamics. Indeed, we observed different bubble bursting mechanisms upon the transition from viscous-controlled to surface viscoelasticity-controlled rupture. When this transition occurs, a bursting bubble resembling the blooming of a flower is observed. A simple modeling argument is proposed, leading to the prediction of the characteristic length scales and the number and shape of the bubble flower petals, thus paving the way for the control of liquid formulations with surface viscoelasticity as a key ingredient. These findings can have important implications in the study of bubble dynamics, with consequences for the numerous processes involving bubble rupture. Bubble flowering can indeed impact phenomena such as the spreading of nutrients in nature or the life of cells in bioreactors.

摘要

气泡的寿命,从形成到破裂,引起了人们的关注,因为气泡常常存在于自然和工业过程中,其几何形状、排水、粗化和破裂强烈影响着这些操作。气泡破裂发生得很快,可能会产生一连串的小液滴或气泡。一旦气泡内部形成一个孔,它就会以各种形状和速度打开,这取决于液体的性质。文献中报道了一系列的气泡破裂模式,其中表面能的减少驱动破裂对抗惯性和粘性力。然而,液体膜的表面粘弹性在这个丰富多彩的场景中的作用仍然未知。我们发现,界面粘弹性的存在对气泡破裂动力学有深远的影响。事实上,我们观察到在从粘性控制到表面粘弹性控制破裂的转变过程中,气泡破裂机制发生了不同的变化。当这种转变发生时,就会观察到一个类似于花朵绽放的破裂气泡。提出了一个简单的建模论点,预测了气泡花的特征长度尺度和花瓣的数量和形状,从而为控制具有表面粘弹性的液体配方铺平了道路,表面粘弹性是关键成分。这些发现对气泡动力学的研究具有重要意义,对涉及气泡破裂的众多过程都有影响。气泡开花确实会影响自然中营养物质的扩散或生物反应器中细胞的寿命等现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bc9/8325363/9fd46c216f2b/pnas.2105058118fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验