White Brian S, Khan Suleiman A, Mason Mike J, Ammad-Ud-Din Muhammad, Potdar Swapnil, Malani Disha, Kuusanmäki Heikki, Druker Brian J, Heckman Caroline, Kallioniemi Olli, Kurtz Stephen E, Porkka Kimmo, Tognon Cristina E, Tyner Jeffrey W, Aittokallio Tero, Wennerberg Krister, Guinney Justin
Computational Oncology, Sage Bionetworks, Seattle, WA, USA.
The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
NPJ Precis Oncol. 2021 Jul 23;5(1):71. doi: 10.1038/s41698-021-00209-9.
The FDA recently approved eight targeted therapies for acute myeloid leukemia (AML), including the BCL-2 inhibitor venetoclax. Maximizing efficacy of these treatments requires refining patient selection. To this end, we analyzed two recent AML studies profiling the gene expression and ex vivo drug response of primary patient samples. We find that ex vivo samples often exhibit a general sensitivity to (any) drug exposure, independent of drug target. We observe that this "general response across drugs" (GRD) is associated with FLT3-ITD mutations, clinical response to standard induction chemotherapy, and overall survival. Further, incorporating GRD into expression-based regression models trained on one of the studies improved their performance in predicting ex vivo response in the second study, thus signifying its relevance to precision oncology efforts. We find that venetoclax response is independent of GRD but instead show that it is linked to expression of monocyte-associated genes by developing and applying a multi-source Bayesian regression approach. The method shares information across studies to robustly identify biomarkers of drug response and is broadly applicable in integrative analyses.
美国食品药品监督管理局(FDA)最近批准了8种用于急性髓系白血病(AML)的靶向疗法,其中包括BCL-2抑制剂维奈托克。要使这些治疗的疗效最大化,需要优化患者选择。为此,我们分析了两项近期的AML研究,这些研究对原发性患者样本的基因表达和体外药物反应进行了分析。我们发现,体外样本通常对(任何)药物暴露表现出普遍的敏感性,与药物靶点无关。我们观察到这种“药物间的普遍反应”(GRD)与FLT3-ITD突变、对标准诱导化疗的临床反应以及总生存期相关。此外,将GRD纳入基于其中一项研究训练的基于表达的回归模型中,提高了其在预测第二项研究中体外反应的性能,从而表明其与精准肿瘤学研究的相关性。我们发现维奈托克反应与GRD无关,但通过开发和应用多源贝叶斯回归方法表明,它与单核细胞相关基因的表达有关。该方法在各项研究之间共享信息,以可靠地识别药物反应的生物标志物,并且广泛适用于综合分析。