Chen Yingjia, He Liye, Ianevski Aleksandr, Nader Kristen, Ruokoranta Tanja, Linnavirta Nora, Miettinen Juho J, Vähä-Koskela Markus, Vänttinen Ida, Kuusanmäki Heikki, Kontro Mika, Porkka Kimmo, Wennerberg Krister, Heckman Caroline A, Giri Anil K, Aittokallio Tero
Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
Cancer Res. 2025 Jul 15;85(14):2753-2768. doi: 10.1158/0008-5472.CAN-24-3840.
Combination therapies are one potential approach to improve the outcomes of patients with relapsed/refractory (R/R) disease. However, comprehensive testing in scarce primary patient material is hampered by the many drug combination possibilities. Furthermore, inter- and intrapatient heterogeneity necessitates personalized treatment optimization approaches that effectively exploit patient-specific vulnerabilities to selectively target both the disease- and resistance-driving cell populations. In this study, we developed a systematic combinatorial design strategy that uses machine learning to prioritize the most promising drug combinations for patients with R/R acute myeloid leukemia (AML). The predictive approach leveraged single-cell transcriptomics and single-agent response profiles measured in primary patient samples to identify targeted combinations that coinhibit treatment-resistant cancer cells individually in each sample of patients with AML. Cell type compositions evolved dynamically between the diagnostic and R/R stages uniquely in each patient, hence requiring personalized drug combination strategies to target therapy-resistant cancer cells. Cell population-specific drug combination assays demonstrated how patient-specific and disease stage-tailored combination predictions led to treatments with synergy and strong potency in R/R AML cells, whereas the same combinations elicited nonsynergistic effects in the diagnostic stage and minimal coinhibitory effects on normal cells. In preliminary experiments on clinical trial samples, the approach predicted clinical outcomes of venetoclax-azacitidine combination therapy in patients with AML. Overall, the computational-experimental approach provides a rational means to identify personalized combinatorial regimens for individual patients with AML with R/R disease that target treatment-resistant leukemic cells, thereby increasing their likelihood of clinical translation.
A predictive model identifies patient-tailored combinations that coinhibit multiple drivers to selectively and synergistically target leukemia cells, which could reduce therapy resistance and enhance treatment outcomes in patients with advanced disease.
联合疗法是改善复发/难治性(R/R)疾病患者治疗结果的一种潜在方法。然而,由于药物组合可能性众多,在稀缺的原发性患者材料中进行全面检测受到阻碍。此外,患者间和患者内的异质性需要个性化的治疗优化方法,以有效利用患者特异性的脆弱性来选择性地靶向疾病驱动细胞群和耐药细胞群。在本研究中,我们开发了一种系统的组合设计策略,该策略使用机器学习为R/R急性髓系白血病(AML)患者确定最有前景的药物组合。这种预测方法利用在原发性患者样本中测量的单细胞转录组学和单药反应谱,以识别在AML患者的每个样本中单独共抑制治疗耐药癌细胞的靶向组合。细胞类型组成在每个患者的诊断阶段和R/R阶段之间独特地动态演变,因此需要个性化的药物组合策略来靶向治疗耐药癌细胞。细胞群特异性药物组合试验证明了患者特异性和疾病阶段定制的组合预测如何导致对R/R AML细胞具有协同作用和强效的治疗,而相同的组合在诊断阶段产生非协同作用,对正常细胞的共抑制作用最小。在对临床试验样本的初步实验中,该方法预测了AML患者维奈克拉-阿扎胞苷联合治疗的临床结果。总体而言,这种计算-实验方法为识别针对患有R/R疾病的AML个体患者的个性化联合方案提供了一种合理手段,该方案靶向治疗耐药白血病细胞,从而增加其临床转化的可能性。
一种预测模型可识别出能共抑制多种驱动因素以选择性和协同靶向白血病细胞的患者定制组合,这可能降低治疗耐药性并改善晚期疾病患者的治疗结果。