Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
Environ Res. 2021 Sep;200:111758. doi: 10.1016/j.envres.2021.111758. Epub 2021 Jul 23.
Biochar was produced from wheat straw (Triticum aestivum), rice straw (Oryza sativa), and kitchen waste at varying pyrolysis temperatures (300°C-700 °C). The biochars were screened depending on their production and physicochemical properties for the adsorptive removal of arsenic (As). The morphological analysis by Field emission scanning electron microscope revealed a porous biochar surface. Spectroscopic characterization of biochars indicated the co-existence of minerals, carboxyl, carbonyl, amide, and hydroxyl groups, which implies the suitability of biochar to immobilize metal (loid)s from soils. Changes in peaks were observed in Fourier-transform infrared and X-ray diffraction images after As sorption indicating the involvement of chemisorption. The thermogravimetric analysis and a low H/C value derived from the CHNS analyzer confirmed the high stability of biochar. The BET analysis was used to estimate the surface areas of wheat straw (15.8 m g), rice straw (12.5 m g), and kitchen waste (2.57 m g) -derived biochars. Batch sorption studies were performed to optimize experimental parameters for maximum removal of As. Maximum removal of As was observed for wheat straw-derived biochar (pyrolyzed at 500 °C) at 8 mg L initial concentration (IC), 7.5 % dose, 25 °C temperature, and 60 min contact time (83.7 ± 0.06 %); in rice straw-derived biochar (pyrolyzed at 500 °C) at 8 mg L IC, 7.5 % dose, 25 °C temperature, 90 min contact time (83.6 ± 0.37 %); and in kitchen waste-derived biochar (pyrolyzed at 500 °C) at 8 mg L IC, 5 % dose, 25 °C temperature, 60 min contact time (76.7 ± 0.16 %). The sorption model parameters suggested the possibility of chemisorption, physisorption, diffusion, and ion exchange for the removal of As. Therefore, it could be recommended to farmers that instead of disposing or burning straws and waste openly, they could adopt the process of charring to generate livelihood security and mitigation of geogenic contaminants from the soil/water dynamic systems.
生物炭是由小麦秸秆(Triticum aestivum)、水稻秸秆(Oryza sativa)和厨余垃圾在不同热解温度(300°C-700°C)下制备的。根据其生产和物理化学性质,对生物炭进行筛选,以用于吸附去除砷(As)。场发射扫描电子显微镜的形态分析显示,生物炭表面具有多孔性。生物炭的光谱特性表明,矿物、羧基、羰基、酰胺和羟基共存,这意味着生物炭适合固定土壤中的金属(类)。吸附后傅里叶变换红外和 X 射线衍射图像中观察到峰的变化,表明涉及化学吸附。热重分析和来自 CHNS 分析仪的低 H/C 值证实了生物炭的高稳定性。BET 分析用于估计小麦秸秆(15.8 m g)、水稻秸秆(12.5 m g)和厨余垃圾(2.57 m g)衍生生物炭的比表面积。进行批量吸附研究,以优化最大去除 As 的实验参数。在 8 mg L 初始浓度(IC)、7.5%剂量、25°C温度和 60 min 接触时间下,小麦秸秆衍生生物炭(在 500°C 下热解)对 As 的去除率最大(83.7±0.06%);在 8 mg L IC、7.5%剂量、25°C 温度、90 min 接触时间下,水稻秸秆衍生生物炭(在 500°C 下热解)对 As 的去除率最大(83.6±0.37%);在 8 mg L IC、5%剂量、25°C 温度、60 min 接触时间下,厨余垃圾衍生生物炭(在 500°C 下热解)对 As 的去除率最大(76.7±0.16%)。吸附模型参数表明,化学吸附、物理吸附、扩散和离子交换都有可能用于去除 As。因此,可以建议农民,他们可以采用碳化过程来产生生计保障,而不是将秸秆和废物露天处理或燃烧,以减轻土壤/水动态系统中的地球成因污染物。