CEA, DRF/Joliot, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette F-91191, France; Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay 91401, France; Parietal Team, Université Paris-Saclay, CEA, Inria, Gif-sur-Yvette 91190, France.
Parietal Team, Université Paris-Saclay, CEA, Inria, Gif-sur-Yvette 91190, France.
Neuroimage. 2021 Nov 1;241:118418. doi: 10.1016/j.neuroimage.2021.118418. Epub 2021 Jul 22.
Whole brain estimation of the haemodynamic response function (HRF) in functional magnetic resonance imaging (fMRI) is critical to get insight on the global status of the neurovascular coupling of an individual in healthy or pathological condition. Most of existing approaches in the literature works on task-fMRI data and relies on the experimental paradigm as a surrogate of neural activity, hence remaining inoperative on resting-stage fMRI (rs-fMRI) data. To cope with this issue, recent works have performed either a two-step analysis to detect large neural events and then characterize the HRF shape or a joint estimation of both the neural and haemodynamic components in an univariate fashion. In this work, we express the neural activity signals as a combination of piece-wise constant temporal atoms associated with sparse spatial maps and introduce an haemodynamic parcellation of the brain featuring a temporally dilated version of a given HRF model in each parcel with unknown dilation parameters. We formulate the joint estimation of the HRF shapes and spatio-temporal neural representations as a multivariate semi-blind deconvolution problem in a paradigm-free setting and introduce constraints inspired from the dictionary learning literature to ease its identifiability. A fast alternating minimization algorithm, along with its efficient implementation, is proposed and validated on both synthetic and real rs-fMRI data at the subject level. To demonstrate its significance at the population level, we apply this new framework to the UK Biobank data set, first for the discrimination of haemodynamic territories between balanced groups (n=24 individuals in each) patients with an history of stroke and healthy controls and second, for the analysis of normal aging on the neurovascular coupling. Overall, we statistically demonstrate that a pathology like stroke or a condition like normal brain aging induce longer haemodynamic delays in certain brain areas (e.g. Willis polygon, occipital, temporal and frontal cortices) and that this haemodynamic feature may be predictive with an accuracy of 74 % of the individual's age in a supervised classification task performed on n=459 subjects.
在功能磁共振成像(fMRI)中对血流动力学响应函数(HRF)进行全脑估计对于了解个体在健康或病理状态下的神经血管耦合的整体状态至关重要。文献中的大多数现有方法都基于任务 fMRI 数据,并依赖于作为神经活动替代物的实验范式,因此在静息期 fMRI(rs-fMRI)数据上不起作用。为了解决这个问题,最近的研究工作要么进行两步分析来检测大的神经事件,然后描述 HRF 形状,要么以单变量的方式联合估计神经和血液动力学成分。在这项工作中,我们将神经活动信号表示为与稀疏空间图相关的分段常数时间原子的组合,并在每个脑区引入血液动力学分割,该分割在每个脑区中具有给定 HRF 模型的时间扩展版本,并且具有未知的扩展参数。我们将 HRF 形状和时空神经表示的联合估计表述为无范例设置下的多元半盲解卷积问题,并引入了受字典学习文献启发的约束,以简化其可识别性。提出了一种快速交替最小化算法及其在合成和真实 rs-fMRI 数据上的有效实现,在个体水平上进行了验证。为了在群体水平上证明其重要性,我们将这个新框架应用于英国生物库数据集,首先是在有中风病史的患者和健康对照组之间的平衡组(每组 24 人)之间的血液动力学区域进行区分,其次是对神经血管耦合的正常老化进行分析。总体而言,我们从统计学上证明了像中风这样的疾病或像正常大脑老化这样的情况会导致某些大脑区域的血液动力学延迟更长(例如 Willis 多边形、枕叶、颞叶和额叶皮层),并且这种血液动力学特征在对 459 名受试者进行的监督分类任务中,以 74%的个体年龄准确率具有预测性。