Suarez Alejandro, Valdés-Hernández Pedro A, Bernal Byron, Dunoyer Catalina, Khoo Hui Ming, Bosch-Bayard Jorge, Riera Jorge J
Neuronal Mass Dynamics Laboratory, Florida International University, Miami, FL, United States.
Nicklaus Children Hospital, Miami, FL, United States.
Front Neurol. 2021 Oct 8;12:659081. doi: 10.3389/fneur.2021.659081. eCollection 2021.
Alongside positive blood oxygenation level-dependent (BOLD) responses associated with interictal epileptic discharges, a variety of negative BOLD responses (NBRs) are typically found in epileptic patients. Previous studies suggest that, in general, up to four mechanisms might underlie the genesis of NBRs in the brain: (i) neuronal disruption of network activity, (ii) altered balance of neurometabolic/vascular couplings, (iii) arterial blood stealing, and (iv) enhanced cortical inhibition. Detecting and classifying these mechanisms from BOLD signals are pivotal for the improvement of the specificity of the electroencephalography-functional magnetic resonance imaging (EEG-fMRI) image modality to identify the seizure-onset zones in refractory local epilepsy. This requires models with physiological interpretation that furnish the understanding of how these mechanisms are fingerprinted by their BOLD responses. Here, we used a Windkessel model with viscoelastic compliance/inductance in combination with dynamic models of both neuronal population activity and tissue/blood O to classify the hemodynamic response functions (HRFs) linked to the above mechanisms in the irritative zones of epileptic patients. First, we evaluated the most relevant imprints on the BOLD response caused by variations of key model parameters. Second, we demonstrated that a general linear model is enough to accurately represent the four different types of NBRs. Third, we tested the ability of a machine learning classifier, built from a simulated ensemble of HRFs, to predict the mechanism underlying the BOLD signal from irritative zones. Cross-validation indicates that these four mechanisms can be classified from realistic fMRI BOLD signals. To demonstrate proof of concept, we applied our methodology to EEG-fMRI data from five epileptic patients undergoing neurosurgery, suggesting the presence of some of these mechanisms. We concluded that a proper identification and interpretation of NBR mechanisms in epilepsy can be performed by combining general linear models and biophysically inspired models.
除了与发作间期癫痫放电相关的正向血氧水平依赖(BOLD)反应外,癫痫患者中通常还会发现多种负向BOLD反应(NBRs)。先前的研究表明,一般来说,大脑中NBRs的产生可能有多达四种机制:(i)网络活动的神经元破坏,(ii)神经代谢/血管耦合平衡的改变,(iii)动脉血窃取,以及(iv)皮质抑制增强。从BOLD信号中检测和分类这些机制对于提高脑电图-功能磁共振成像(EEG-fMRI)图像模态的特异性以识别难治性局灶性癫痫的发作起始区至关重要。这需要具有生理学解释的模型,以帮助理解这些机制如何通过其BOLD反应留下指纹。在这里,我们使用了一个具有粘弹性顺应性/电感的风箱模型,并结合神经元群体活动和组织/血液O的动态模型,对癫痫患者刺激区中与上述机制相关的血流动力学反应函数(HRFs)进行分类。首先,我们评估了关键模型参数变化对BOLD反应产生的最相关印记。其次,我们证明了一个通用线性模型足以准确表示四种不同类型的NBRs。第三,我们测试了一个基于模拟HRF集合构建的机器学习分类器从刺激区预测BOLD信号潜在机制的能力。交叉验证表明,可以从现实的功能磁共振成像BOLD信号中对这四种机制进行分类。为了证明概念验证,我们将我们的方法应用于五名接受神经外科手术的癫痫患者的EEG-fMRI数据,表明存在其中一些机制。我们得出结论,通过结合通用线性模型和受生物物理学启发的模型,可以对癫痫中的NBR机制进行适当的识别和解释。