Suppr超能文献

rsHRF:静息态 HRF 估计和解卷积的工具箱。

rsHRF: A toolbox for resting-state HRF estimation and deconvolution.

机构信息

Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China; Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent 9000, Belgium.

Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent 9000, Belgium; Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven 3001, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice 30126, Italy.

出版信息

Neuroimage. 2021 Dec 1;244:118591. doi: 10.1016/j.neuroimage.2021.118591. Epub 2021 Sep 21.

Abstract

The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging studies. Additionally, the HRF shape itself is a useful local measure. However, most algorithms for HRF estimation are specific for task-related fMRI data, and only a few can be directly applied to resting-state protocols. Here we introduce rsHRF, a Matlab and Python toolbox that implements HRF estimation and deconvolution from the resting-state BOLD signal. We first provide an overview of the main algorithm, practical implementations, and then demonstrate the feasibility and usefulness of rsHRF by validation experiments with a publicly available resting-state fMRI dataset. We also provide tools for statistical analyses and visualization. We believe that this toolbox may significantly contribute to a better analysis and understanding of the components and variability of BOLD signals.

摘要

血流动力学响应函数 (HRF) 极大地影响了脑激活和连接的个体内和个体间变异性,并且可能混淆连接分析中时间优先性的估计,因此有必要对其进行估计,以便正确解释神经影像学研究。此外,HRF 本身的形状也是一种有用的局部度量。然而,大多数 HRF 估计算法都是针对任务相关的 fMRI 数据特定的,只有少数可以直接应用于静息态协议。在这里,我们介绍了 rsHRF,这是一个 Matlab 和 Python 工具箱,可从静息状态 BOLD 信号中实现 HRF 的估计和解卷积。我们首先提供了主要算法、实际实现的概述,然后通过使用公开可用的静息态 fMRI 数据集进行验证实验,展示了 rsHRF 的可行性和有用性。我们还提供了统计分析和可视化的工具。我们相信,这个工具箱可以极大地促进对 BOLD 信号的组成和变异性的更好的分析和理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验