Suppr超能文献

人工智能心电图识别不明来源栓塞性脑卒中的无症状性心房颤动。

Artificial Intelligence-Enabled ECG to Identify Silent Atrial Fibrillation in Embolic Stroke of Unknown Source.

机构信息

Neurology, Mayo Clinic, 200 First Street SW, Mayo W8B, Rochester, MN 55905, USA.

Health Science Research, Mayo Clinic, Rochester, MN 55905, USA; Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

J Stroke Cerebrovasc Dis. 2021 Sep;30(9):105998. doi: 10.1016/j.jstrokecerebrovasdis.2021.105998. Epub 2021 Jul 22.

Abstract

OBJECTIVES

Embolic strokes of unknown source (ESUS) are common and often suspected to be caused by unrecognized paroxysmal atrial fibrillation (AF). An AI-enabled ECG (AI-ECG) during sinus rhythm has been shown to identify patients with unrecognized AF. We pursued this study to determine if the AI-ECG model differentiates between patients with ESUS and those with known causes of stroke, and to evaluate whether the AF prediction by AI-ECG among patients with ESUS was associated with the results of prolonged ambulatory cardiac rhythm monitoring.

MATERIALS AND METHODS

We reviewed consecutive patients admitted with acute ischemic stroke to a comprehensive stroke center between January 2018 and August 2019 and employed the TOAST classification to categorize the mechanisms of ischemia. Use and results of ambulatory cardiac rhythm monitoring after discharge were gathered. We ran the AI-ECG model to obtain AF probabilities from all ECGs acquired during the hospitalization and compared those probabilities in patients with ESUS versus those with known stroke causes (apart from AF), and between patients with and without AF detected by ambulatory cardiac rhythm monitoring.

RESULTS

The study cohort had 930 patients, including 263 patients (28.3%) with known AF or AF diagnosed during the index hospitalization and 265 cases (28.5%) categorized as ESUS. Ambulatory cardiac rhythm monitoring was performed in 226 (85.3%) patients with ESUS. AF probability by AI-ECG was not associated with ESUS. However, among patients with ESUS, the probability of AF by AI-ECG was associated with a higher likelihood of AF detection by ambulatory monitoring (P = 0.004). A probability of AF by AI-ECG greater than 0.20 was associated with AF detection by ambulatory cardiac rhythm monitoring with an OR of 5.47 (95% CI 1.51-22.51).

CONCLUSIONS

AI-ECG may help guide the use of prolonged ambulatory cardiac rhythm monitoring in patients with ESUS to identify those who might benefit from anticoagulation.

摘要

目的

不明来源的栓塞性卒中(ESUS)较为常见,且常被怀疑由未识别的阵发性心房颤动(AF)引起。窦性节律下的 AI 心电图(AI-ECG)已被证明可识别出未识别 AF 的患者。我们进行这项研究是为了确定 AI-ECG 模型是否能区分 ESUS 患者和已知卒中原因的患者,并评估 ESUS 患者中 AI-ECG 预测的 AF 是否与延长的动态心电图监测结果相关。

材料和方法

我们回顾了 2018 年 1 月至 2019 年 8 月期间在综合性卒中中心因急性缺血性卒中住院的连续患者,并采用 TOAST 分类法将缺血机制分类。收集出院后动态心电图监测的使用和结果。我们运行 AI-ECG 模型从住院期间获取的所有心电图中获得 AF 概率,并比较 ESUS 患者与已知卒中原因(除 AF 外)患者、以及通过动态心电图监测检测到 AF 患者和未检测到 AF 患者之间的概率。

结果

研究队列包括 930 例患者,其中 263 例(28.3%)患者已知存在 AF 或在指数住院期间诊断为 AF,265 例(28.5%)归类为 ESUS。226 例(85.3%)ESUS 患者进行了动态心电图监测。AI-ECG 的 AF 概率与 ESUS 无关。然而,在 ESUS 患者中,AI-ECG 的 AF 概率与通过动态监测检测 AF 的可能性更高相关(P=0.004)。AI-ECG 的 AF 概率大于 0.20 与通过动态心电图监测检测到 AF 相关,OR 为 5.47(95%CI 1.51-22.51)。

结论

AI-ECG 可能有助于指导 ESUS 患者使用延长的动态心电图监测,以识别那些可能从抗凝治疗中获益的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验