Suppr超能文献

人工智能利用窦性心律心电图预测不明来源栓塞性脑卒中患者的未诊断心房颤动。

Artificial intelligence predicts undiagnosed atrial fibrillation in patients with embolic stroke of undetermined source using sinus rhythm electrocardiograms.

机构信息

Cardiovascular Center, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.

Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

出版信息

Heart Rhythm. 2024 Sep;21(9):1647-1655. doi: 10.1016/j.hrthm.2024.03.029. Epub 2024 Mar 15.

Abstract

BACKGROUND

Artificial intelligence (AI)-enabled sinus rhythm (SR) electrocardiogram (ECG) interpretation can aid in identifying undiagnosed paroxysmal atrial fibrillation (AF) in patients with embolic stroke of undetermined source (ESUS).

OBJECTIVE

The purpose of this study was to assess the efficacy of an AI model in identifying AF based on SR ECGs in patients with ESUS.

METHODS

A transformer-based vision AI model was developed using 737,815 SR ECGs from patients with and without AF to detect current paroxysmal AF or predict the future development of AF within a 2-year period. Probability of AF was calculated from baseline SR ECGs using this algorithm. Its diagnostic performance was further tested in a cohort of 352 ESUS patients from 4 tertiary hospitals, all of whom were monitored using an insertable cardiac monitor (ICM) for AF surveillance.

RESULTS

Over 25.1-month follow-up, AF episodes lasting ≥1 hour were identified in 58 patients (14.4%) using ICMs. In the receiver operating curve (ROC) analysis, the area under the curve for the AI algorithm to identify AF ≥1 hour was 0.806, which improved to 0.880 after integrating the clinical parameters into the model. The AI algorithm exhibited greater accuracy in identifying longer AF episodes (ROC for AF ≥12 hours: 0.837, for AF ≥24 hours: 0.879) and a temporal trend indicating that the AI-based AF risk score increased as the ECG recording approached the AF onset (P for trend <.0001).

CONCLUSIONS

Our AI model demonstrated excellent diagnostic performance in predicting AF in patients with ESUS, potentially enhancing patient prognosis through timely intervention and secondary prevention of ischemic stroke in ESUS cohorts.

摘要

背景

人工智能 (AI) 辅助窦性节律 (SR) 心电图 (ECG) 解读有助于识别不明来源栓塞性脑卒中 (ESUS) 患者中未诊断的阵发性心房颤动 (AF)。

目的

本研究旨在评估基于 SR ECG 的 AI 模型在识别 ESUS 患者 AF 中的效能。

方法

使用来自伴有和不伴有 AF 的患者的 737,815 份 SR ECG 开发了一种基于变压器的视觉 AI 模型,以检测当前阵发性 AF 或预测未来 2 年内 AF 的发展。使用该算法从基线 SR ECG 计算 AF 的可能性。在来自 4 家三级医院的 352 名 ESUS 患者队列中进一步测试其诊断性能,所有患者均使用植入式心脏监测仪 (ICM) 进行 AF 监测。

结果

在 25.1 个月的随访中,使用 ICM 在 58 名患者 (14.4%) 中识别出持续时间≥1 小时的 AF 发作。在受试者工作特征曲线 (ROC) 分析中,AI 算法识别 AF≥1 小时的曲线下面积为 0.806,将临床参数整合到模型中后提高至 0.880。AI 算法在识别更长时间的 AF 发作时具有更高的准确性 (ROC 用于 AF≥12 小时:0.837,用于 AF≥24 小时:0.879),并且趋势表明随着 ECG 记录接近 AF 发作,基于 AI 的 AF 风险评分增加 (P<0.0001)。

结论

我们的 AI 模型在预测 ESUS 患者 AF 方面表现出出色的诊断性能,通过及时干预和对 ESUS 队列中缺血性卒中的二级预防,可能改善患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验