Suppr超能文献

人工智能在急性缺血性卒中中的应用:一项范围综述

Application of Artificial Intelligence in Acute Ischemic Stroke: A Scoping Review.

作者信息

Heo JoonNyung

机构信息

Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.

出版信息

Neurointervention. 2024 Mar;20(1):4-14. doi: 10.5469/neuroint.2025.00052. Epub 2025 Feb 18.

Abstract

Artificial intelligence (AI) is revolutionizing stroke care by enhancing diagnosis, treatment, and outcome prediction. This review examines 505 original studies on AI applications in ischemic stroke, categorized into outcome prediction, stroke risk prediction, diagnosis, etiology prediction, and complication and comorbidity prediction. Outcome prediction, the most explored category, includes studies predicting functional outcomes, mortality, and recurrence, often achieving high accuracy and outperforming traditional methods. Stroke risk prediction models effectively integrate clinical and imaging data, improving assessments of both first-time and recurrent stroke risks. Diagnostic tools, such as automated imaging analysis and lesion segmentation, streamline acute stroke workflows, while AI models for large vessel occlusion detection demonstrate clinical utility. Etiology prediction focuses on identifying causes such as atrial fibrillation or cancer-associated thrombi, using imaging and thrombus analysis. Complication and comorbidity prediction models address stroke-associated pneumonia and acute kidney injury, aiding in risk stratification and resource allocation. While significant advancements have been made, challenges such as limited validation, ethical considerations, and the need for better data collection persist. This review highlights the advancements in AI applications for addressing key challenges in stroke care, demonstrating its potential to enhance precision medicine and improve patient outcomes.

摘要

人工智能(AI)正在通过加强诊断、治疗和结果预测来彻底改变中风护理。这篇综述研究了505项关于AI在缺血性中风中应用的原创研究,分为结果预测、中风风险预测、诊断、病因预测以及并发症和合并症预测。结果预测是研究最多的类别,包括预测功能结果、死亡率和复发的研究,通常具有很高的准确性,并且优于传统方法。中风风险预测模型有效地整合了临床和影像数据,改善了对首次中风和复发性中风风险的评估。诊断工具,如自动影像分析和病变分割,简化了急性中风的工作流程,而用于大血管闭塞检测的AI模型显示出临床实用性。病因预测侧重于利用影像和血栓分析识别诸如心房颤动或癌症相关血栓等病因。并发症和合并症预测模型处理与中风相关的肺炎和急性肾损伤,有助于风险分层和资源分配。虽然已经取得了重大进展,但诸如验证有限、伦理考量以及更好的数据收集需求等挑战仍然存在。这篇综述强调了AI应用在应对中风护理关键挑战方面的进展,展示了其增强精准医学和改善患者预后的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ce/11900286/1d837a7cbbdd/neuroint-2025-00052f1.jpg

相似文献

1
Application of Artificial Intelligence in Acute Ischemic Stroke: A Scoping Review.
Neurointervention. 2024 Mar;20(1):4-14. doi: 10.5469/neuroint.2025.00052. Epub 2025 Feb 18.
2
Artificial Intelligence and Early Detection of Breast, Lung, and Colon Cancer: A Narrative Review.
Cureus. 2025 Feb 18;17(2):e79199. doi: 10.7759/cureus.79199. eCollection 2025 Feb.
3
Artificial Intelligence in Atrial Fibrillation: From Early Detection to Precision Therapy.
J Clin Med. 2025 Apr 11;14(8):2627. doi: 10.3390/jcm14082627.
4
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.
Comput Biol Med. 2025 Jan;184:109391. doi: 10.1016/j.compbiomed.2024.109391. Epub 2024 Nov 22.
6
AI and Machine Learning for Precision Medicine in Acute Pancreatitis: A Narrative Review.
Medicina (Kaunas). 2025 Mar 29;61(4):629. doi: 10.3390/medicina61040629.
7
Artificial intelligence in ischemic stroke images: current applications and future directions.
Front Neurol. 2024 Jul 10;15:1418060. doi: 10.3389/fneur.2024.1418060. eCollection 2024.
9
Artificial intelligence in stroke risk assessment and management via retinal imaging.
Front Comput Neurosci. 2025 Feb 17;19:1490603. doi: 10.3389/fncom.2025.1490603. eCollection 2025.

引用本文的文献

1
Gut microbiota regulate atherosclerosis via the gut-vascular axis: a scoping review of mechanisms and therapeutic interventions.
Front Microbiol. 2025 Aug 8;16:1606309. doi: 10.3389/fmicb.2025.1606309. eCollection 2025.

本文引用的文献

4
Enhancing stroke risk and prognostic timeframe assessment with deep learning and a broad range of retinal biomarkers.
Artif Intell Med. 2024 Aug;154:102927. doi: 10.1016/j.artmed.2024.102927. Epub 2024 Jun 28.
6
A Multimodal Ensemble Deep Learning Model for Functional Outcome Prognosis of Stroke Patients.
J Stroke. 2024 May;26(2):312-320. doi: 10.5853/jos.2023.03426. Epub 2024 May 30.
7
Deep Learning-Based Automatic Classification of Ischemic Stroke Subtype Using Diffusion-Weighted Images.
J Stroke. 2024 May;26(2):300-311. doi: 10.5853/jos.2024.00535. Epub 2024 May 30.
8
Early identification of stroke through deep learning with multi-modal human speech and movement data.
Neural Regen Res. 2025 Jan 1;20(1):234-241. doi: 10.4103/1673-5374.393103. Epub 2024 Jan 8.
9
Application of interpretable machine learning algorithms to predict acute kidney injury in patients with cerebral infarction in ICU.
J Stroke Cerebrovasc Dis. 2024 Jul;33(7):107729. doi: 10.1016/j.jstrokecerebrovasdis.2024.107729. Epub 2024 Apr 23.
10
PRERISK: A Personalized, Artificial Intelligence-Based and Statistically-Based Stroke Recurrence Predictor for Recurrent Stroke.
Stroke. 2024 May;55(5):1200-1209. doi: 10.1161/STROKEAHA.123.043691. Epub 2024 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验