Microbiology Department, Weber State University, Ogden, UT 84408-2506; Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan 84322-8700.
Microbiology Department, Weber State University, Ogden, UT 84408-2506.
J Dairy Sci. 2021 Oct;104(10):10586-10593. doi: 10.3168/jds.2021-20232. Epub 2021 Jul 23.
Paucilactobacillus wasatchensis, a nonstarter lactic acid bacteria, can cause late gas production and splits and cracks in aging cheese when it metabolizes 6-carbon substrates, particularly galactose, to a 5-carbon sugar, resulting in the release of CO. Previous studies have not explained late gas production in aging cheese when no galactose is present. Based on the genome sequence of Pa. wasatchensis WDC04, genes for potential metabolic pathways were mapped using knowledgebase predictive biology software. This metabolic modeling predicted Pa. wasatchensis WDC04 could metabolize gluconate. Gluconate contains 6 carbons, and Pa. wasatchensis WDC04 contains genes to convert it to 6-P-gluconate and then to ribulose-5-P by using 6-phosphogluconate dehydrogenase in a decarboxylating step, producing CO during its metabolism. The goal of this study was to determine if sodium gluconate, often added to cheese to reduce calcium lactate crystal formation, could be metabolized by Pa. wasatchensis WDC04, resulting in gas production. Carbohydrate-restricted DeMan, Rogosa, and Sharpe broth was mixed with varying ratios of ribose, sodium gluconate, or d-galactose (total added substrate content of 1% wt/vol). Oxyrase (Oxyrase Inc.; 1.8% vol/vol) was also used to mimic the anaerobic environment of cheese aging in selected tubes. Tubes were inoculated with a 4-d culture of Pa. wasatchensis WDCO4, and results were recorded over 8 d. When inoculated into carbohydrate-restricted DeMan, Rogosa, and Sharpe broth containing only sodium gluconate as the added substrate, Pa. wasatchensis WDC04 grew, confirming gluconate utilization. Of the 10 ratios used, Pa. wasatchensis WDC04 produced gas in 6 scenarios, with the most gas production resulting from the ratio of 100% sodium gluconate with no added ribose or galactose. It was confirmed that obligately heterofermentative nonstarter lactobacilli such as Pa. wasatchensis WDC04 can utilize sodium gluconate to produce CO gas. Addition of sodium gluconate to cheese thus becomes another risk factor for unwanted gas production and formation of slits and cracks.
瓦氏副干酪乳杆菌是一种非发酵性乳酸菌,当它将 6 碳底物(特别是半乳糖)代谢为 5 碳糖时,会导致老化奶酪后期产气和分裂、开裂,从而释放 CO。之前的研究并未解释在没有半乳糖存在的情况下,老化奶酪中晚期产气的原因。基于瓦氏副干酪乳杆菌 WDC04 的基因组序列,使用知识库预测生物学软件对潜在代谢途径的基因进行了映射。该代谢模型预测,瓦氏副干酪乳杆菌 WDC04 可以代谢葡萄糖酸。葡萄糖酸含有 6 个碳原子,而瓦氏副干酪乳杆菌 WDC04 含有将其转化为 6-P-葡萄糖酸的基因,然后通过 6-磷酸葡萄糖酸脱氢酶在脱羧步骤中转化为核酮糖-5-磷酸,在代谢过程中产生 CO。本研究的目的是确定是否可以将葡萄糖酸钠代谢为瓦氏副干酪乳杆菌 WDC04,从而产生气体,葡萄糖酸钠通常添加到奶酪中以减少乳酸钙晶体的形成。用不同比例的核糖、葡萄糖酸钠或 D-半乳糖(总添加底物含量为 1%wt/vol)混合碳水化合物受限的德芒、罗高萨和夏普肉汤。在选定的管中还使用氧酶(Oxyrase Inc.;1.8%vol/vol)模拟奶酪老化的厌氧环境。用 4 天的瓦氏副干酪乳杆菌 WDCO4 培养物接种试管,并在 8 天内记录结果。当接种到仅含有葡萄糖酸钠作为添加底物的碳水化合物受限的德芒、罗高萨和夏普肉汤中时,瓦氏副干酪乳杆菌 WDC04 生长,证实了葡萄糖酸的利用。在使用的 10 个比例中,瓦氏副干酪乳杆菌 WDC04 在 6 种情况下产生气体,其中 100%葡萄糖酸钠且没有添加核糖或半乳糖的比例产生的气体最多。证实了像瓦氏副干酪乳杆菌 WDC04 这样的专性异型发酵非发酵性乳酸菌可以利用葡萄糖酸钠产生 CO 气体。因此,向奶酪中添加葡萄糖酸钠成为产生不必要气体和形成裂缝和裂纹的另一个风险因素。