Suppr超能文献

识别改善精神分裂症中 PANSS 维度模型的策略:考虑多层次结构、贝叶斯模型和临床分期。

Identifying strategies to improve PANSS based dimensional models in schizophrenia: Accounting for multilevel structure, Bayesian model and clinical staging.

机构信息

Laboratory of Integrative Neuroscience (LiNC), Department of Psychiatry, Universidade Federal de São Paulo, SP, Brazil; Programa de Esquizofrenia da Universidade Federal de São Paulo (PROESQ), SP, Brazil.

Faculty of Education, Østfold University College, Halden, Norway.

出版信息

Schizophr Res. 2022 May;243:424-430. doi: 10.1016/j.schres.2021.06.034. Epub 2021 Jul 23.

Abstract

BACKGROUND

Dimensional approaches can decompose a construct in a set of continuous variables, improving the characterization of complex phenotypes, such as schizophrenia. However, the five-factor model of the Positive and Negative Syndrome Scale (PANSS), the most used instrument in schizophrenia research, yielded poor fits in most confirmatory factor analysis (CFA) studies, raising concerns about its applications. Thus, we aimed to identify dimensional PANSS CFA models with good psychometric properties by comparing the traditional CFA with three methodological approaches: Bayesian CFA, multilevel modeling, and Multiple Indicators Multiple Causes (MIMIC) modeling.

METHODS

Clinical data of 700 schizophrenia patients from four centers were analyzed. We first performed a traditional CFA. Next, we tested the three techniques: 1) a Bayesian CFA; 2) a multilevel analysis using the centers as level; and 3) a MIMIC modeling to evaluate the impact of clinical staging on PANSS factors and items.

RESULTS

CFA and Bayesian CFA produced poor fit models. However, when adding a multilevel structure to the CFA model, a good fit model emerged. MIMIC modeling yielded significant differences in the factor structure between the clinical stages of schizophrenia. Sex, age, age of onset, and duration of illness did not significantly affect the model fit.

CONCLUSION

Our comparison of different CFA methods highlights the need for multilevel structure to achieve a good fit model and the potential utility of staging models (rather than the duration of illness) to deal with clinical heterogeneity in schizophrenia. Large prospective samples with biological data should help to understand the interplay between psychometrics concerns and neurobiology research.

摘要

背景

维度方法可以将一个构念分解为一组连续变量,从而改善复杂表型(如精神分裂症)的特征描述。然而,精神分裂症研究中最常用的工具——阳性和阴性症状量表(PANSS)的五因素模型,在大多数验证性因子分析(CFA)研究中拟合效果不佳,这引起了人们对其应用的关注。因此,我们旨在通过比较传统的 CFA 与三种方法学方法(贝叶斯 CFA、多层次建模和多指标多原因(MIMIC)建模)来确定具有良好心理测量特性的维度 PANSS CFA 模型。

方法

对来自四个中心的 700 名精神分裂症患者的临床数据进行了分析。我们首先进行了传统的 CFA。接下来,我们测试了三种技术:1)贝叶斯 CFA;2)使用中心作为水平的多层次分析;3)MIMIC 建模,以评估临床分期对 PANSS 因子和项目的影响。

结果

CFA 和贝叶斯 CFA 产生了拟合不良的模型。然而,当将多层次结构添加到 CFA 模型中时,出现了一个良好拟合的模型。MIMIC 建模得出了精神分裂症临床阶段之间因子结构存在显著差异的结论。性别、年龄、发病年龄和病程对模型拟合没有显著影响。

结论

我们对不同 CFA 方法的比较强调了需要多层次结构来实现良好拟合模型的必要性,以及使用分期模型(而不是病程)来处理精神分裂症临床异质性的潜在效用。具有生物学数据的大型前瞻性样本应有助于理解心理测量学问题与神经生物学研究之间的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验