Suppr超能文献

基于数字孪生的脑图像融合的半监督支持向量机

Semi-Supervised Support Vector Machine for Digital Twins Based Brain Image Fusion.

作者信息

Wan Zhibo, Dong Youqiang, Yu Zengchen, Lv Haibin, Lv Zhihan

机构信息

College of Computer Science and Technology, Qingdao University, Qingdao, China.

R&D Department, Qingdao Haily Measuring Technologies Co., Ltd., Qingdao, China.

出版信息

Front Neurosci. 2021 Jul 9;15:705323. doi: 10.3389/fnins.2021.705323. eCollection 2021.

Abstract

The purpose is to explore the feature recognition, diagnosis, and forecasting performances of Semi-Supervised Support Vector Machines (S3VMs) for brain image fusion Digital Twins (DTs). Both unlabeled and labeled data are used regarding many unlabeled data in brain images, and semi supervised support vector machine (SVM) is proposed. Meantime, the AlexNet model is improved, and the brain images in real space are mapped to virtual space by using digital twins. Moreover, a diagnosis and prediction model of brain image fusion digital twins based on semi supervised SVM and improved AlexNet is constructed. Magnetic Resonance Imaging (MRI) data from the Brain Tumor Department of a Hospital are collected to test the performance of the constructed model through simulation experiments. Some state-of-art models are included for performance comparison: Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), AlexNet, and Multi-Layer Perceptron (MLP). Results demonstrate that the proposed model can provide a feature recognition and extraction accuracy of 92.52%, at least an improvement of 2.76% compared to other models. Its training lasts for about 100 s, and the test takes about 0.68 s. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of the proposed model are 4.91 and 5.59%, respectively. Regarding the assessment indicators of brain image segmentation and fusion, the proposed model can provide a 79.55% Jaccard coefficient, a 90.43% Positive Predictive Value (PPV), a 73.09% Sensitivity, and a 75.58% Dice Similarity Coefficient (DSC), remarkably better than other models. Acceleration efficiency analysis suggests that the improved AlexNet model is suitable for processing massive brain image data with a higher speedup indicator. To sum up, the constructed model can provide high accuracy, good acceleration efficiency, and excellent segmentation and recognition performances while ensuring low errors, which can provide an experimental basis for brain image feature recognition and digital diagnosis.

摘要

目的是探索半监督支持向量机(S3VMs)在脑图像融合数字孪生(DTs)中的特征识别、诊断和预测性能。考虑到脑图像中存在大量未标记数据,同时使用未标记和已标记数据,提出了半监督支持向量机(SVM)。同时,对AlexNet模型进行了改进,并利用数字孪生将真实空间中的脑图像映射到虚拟空间。此外,构建了基于半监督SVM和改进AlexNet的脑图像融合数字孪生诊断与预测模型。收集了某医院脑肿瘤科室的磁共振成像(MRI)数据,通过模拟实验测试所构建模型的性能。纳入了一些先进模型进行性能比较:长短期记忆网络(LSTM)、卷积神经网络(CNN)、循环神经网络(RNN)、AlexNet和多层感知器(MLP)。结果表明,所提出的模型能够提供92.52%的特征识别和提取准确率,与其他模型相比至少提高了2.76%。其训练持续约100秒,测试耗时约0.68秒。所提出模型的均方根误差(RMSE)和平均绝对误差(MAE)分别为4.91%和5.59%。关于脑图像分割和融合的评估指标,所提出的模型能够提供79.55%的杰卡德系数、90.43%的阳性预测值(PPV)、73.09%的灵敏度和75.58%的骰子相似系数(DSC),明显优于其他模型。加速效率分析表明,改进后的AlexNet模型适用于以更高的加速指标处理海量脑图像数据。综上所述,所构建的模型能够在确保低误差的同时提供高精度、良好的加速效率以及出色的分割和识别性能,可为脑图像特征识别和数字诊断提供实验依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e31c/8298822/e4460dab8639/fnins-15-705323-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验