Suppr超能文献

一种基于特殊函数的新型光谱变换技术,用于改进胸部X光图像分类。

A novel spectral transformation technique based on special functions for improved chest X-ray image classification.

作者信息

Aljohani Abeer

机构信息

Department of Computer Science and Informatics, Applied College, Taibah University, Medina, Saudi Arabia.

出版信息

PLoS One. 2025 Jun 11;20(6):e0325058. doi: 10.1371/journal.pone.0325058. eCollection 2025.

Abstract

Chest X-ray image classification plays an important role in medical diagnostics. Machine learning algorithms enhanced the performance of these classification algorithms by introducing advance techniques. These classification algorithms often requires conversion of a medical data to another space in which the original data is reduced to important values or moments. We developed a mechanism which converts a given medical image to a spectral space which have a base set composed of special functions. In this study, we propose a chest X-ray image classification method based on spectral coefficients. The spectral coefficients are based on an orthogonal system of Legendre type smooth polynomials. We developed the mathematical theory to calculate spectral moment in Legendre polynomails space and use these moments to train traditional classifier like SVM and random forest for a classification task. The procedure is applied to a latest data set of X-Ray images. The data set is composed of X-Ray images of three different classes of patients, normal, Covid infected and pneumonia. The moments designed in this study, when used in SVM or random forest improves its ability to classify a given X-Ray image at a high accuracy. A parametric study of the proposed approach is presented. The performance of these spectral moments is checked in Support vector machine and Random forest algorithm. The efficiency and accuracy of the proposed method is presented in details. All our simulation is performed in computation softwares, Matlab and Python. The image pre processing and spectral moments generation is performed in Matlab and the implementation of the classifiers is performed with python. It is observed that the proposed approach works well and provides satisfactory results (0.975 accuracy), however further studies are required to establish a more accurate and fast version of this approach.

摘要

胸部X光图像分类在医学诊断中起着重要作用。机器学习算法通过引入先进技术提高了这些分类算法的性能。这些分类算法通常需要将医学数据转换到另一个空间,在该空间中原始数据被简化为重要的值或矩。我们开发了一种机制,将给定的医学图像转换到一个光谱空间,该光谱空间具有由特殊函数组成的基集。在本研究中,我们提出了一种基于光谱系数的胸部X光图像分类方法。光谱系数基于勒让德型光滑多项式的正交系统。我们发展了数学理论来计算勒让德多项式空间中的光谱矩,并使用这些矩来训练传统分类器,如支持向量机(SVM)和随机森林,以进行分类任务。该程序应用于最新的X光图像数据集。该数据集由三类不同患者的X光图像组成,分别是正常、新冠感染和肺炎患者。本研究设计的矩在用于支持向量机或随机森林时,提高了其对给定X光图像进行高精度分类的能力。对所提出的方法进行了参数研究。在支持向量机和随机森林算法中检验了这些光谱矩的性能。详细介绍了所提方法的效率和准确性。我们所有的模拟都在计算软件Matlab和Python中进行。图像预处理和光谱矩生成在Matlab中进行,分类器的实现用Python进行。结果表明,所提出的方法效果良好,提供了令人满意的结果(准确率为0.975),然而,需要进一步研究以建立该方法更准确、快速的版本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d284/12157170/38cc2722b0c5/pone.0325058.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验