Bandara Chaturanga D, Schmidt Matthias, Davoudpour Yalda, Stryhanyuk Hryhoriy, Richnow Hans H, Musat Niculina
ProVIS-Centre for Chemical Microscopy, Department of Isotope Biogeochemistry, Helmholtz Center for Environmental Research (UFZ), Leipzig, Germany.
Front Plant Sci. 2021 Jul 7;12:668929. doi: 10.3389/fpls.2021.668929. eCollection 2021.
During the past decades, several stand-alone and combinatorial methods have been developed to investigate the chemistry (i.e., mapping of elemental, isotopic, and molecular composition) and the role of microbes in soil and rhizosphere. However, none of these approaches are currently applicable to characterize soil-root-microbe interactions simultaneously in their spatial arrangement. Here we present a novel approach that allows for simultaneous microbial identification and chemical analysis of the rhizosphere at micro- to nano-meter spatial resolution. Our approach includes (i) a resin embedding and sectioning method suitable for simultaneous correlative characterization of rhizosphere, (ii) an analytical work flow that allows up to six instruments/techniques to be used correlatively, and (iii) data and image correlation. Hydrophilic, immunohistochemistry compatible, low viscosity LR white resin was used to embed the rhizosphere sample. We employed waterjet cutting and avoided polishing the surface to prevent smearing of the sample surface at nanoscale. The quality of embedding was analyzed by Helium Ion Microscopy (HIM). Bacteria in the embedded soil were identified by Catalyzed Reporter Deposition-Fluorescence Hybridization (CARD-FISH) to avoid interferences from high levels of autofluorescence emitted by soil particles and organic matter. Chemical mapping of the rhizosphere was done by Scanning Electron Microscopy (SEM) with Energy-dispersive X-ray analysis (SEM-EDX), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), nano-focused Secondary Ion mass Spectrometry (nanoSIMS), and confocal Raman spectroscopy (μ-Raman). High-resolution correlative characterization by six different techniques followed by image registration shows that this method can meet the demanding requirements of multiple characterization techniques to identify spatial organization of bacteria and chemically map the rhizosphere. Finally, we presented individual and correlative workflows for imaging and image registration to analyze data. We hope this method will be a platform to combine various 2D analytics for an improved understanding of the rhizosphere processes and their ecological significance.
在过去几十年里,已经开发了几种独立的和组合的方法来研究土壤和根际中微生物的化学性质(即元素、同位素和分子组成的图谱)及其作用。然而,目前这些方法都不适用于同时表征土壤 - 根 - 微生物相互作用的空间排列。在此,我们提出一种新方法,该方法能够在微米到纳米的空间分辨率下同时对根际进行微生物鉴定和化学分析。我们的方法包括:(i)一种适用于根际同时相关表征的树脂包埋和切片方法;(ii)一种允许同时使用多达六种仪器/技术进行相关分析的工作流程;以及(iii)数据和图像关联。使用亲水性、兼容免疫组织化学、低粘度的LR白色树脂包埋根际样品。我们采用水刀切割并避免对表面进行抛光,以防止在纳米尺度上对样品表面造成涂抹。通过氦离子显微镜(HIM)分析包埋质量。通过催化报告沉积 - 荧光杂交(CARD - FISH)鉴定包埋土壤中的细菌,以避免土壤颗粒和有机物发出的高水平自发荧光的干扰。通过扫描电子显微镜(SEM)结合能量色散X射线分析(SEM - EDX)、飞行时间二次离子质谱(ToF - SIMS)、纳米聚焦二次离子质谱(nanoSIMS)和共聚焦拉曼光谱(μ - Raman)对根际进行化学图谱分析。通过六种不同技术进行高分辨率相关表征并随后进行图像配准表明,该方法能够满足多种表征技术对鉴定细菌空间组织和对根际进行化学图谱分析的严格要求。最后,我们展示了用于成像和图像配准以分析数据的单独和相关工作流程。我们希望这种方法将成为一个平台,用于结合各种二维分析方法,以更好地理解根际过程及其生态意义。