Salcedo Agustín, Lustemberg Pablo G, Rui Ning, Palomino Robert M, Liu Zongyuan, Nemsak Slavomir, Senanayake Sanjaya D, Rodriguez José A, Ganduglia-Pirovano M Verónica, Irigoyen Beatriz
Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires (UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.
Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES, CONICET-UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.
ACS Catal. 2021 Jul 2;11(13):8327-8337. doi: 10.1021/acscatal.1c01604. Epub 2021 Jun 23.
Methane steam reforming (MSR) plays a key role in the production of syngas and hydrogen from natural gas. The increasing interest in the use of hydrogen for fuel cell applications demands development of catalysts with high activity at reduced operating temperatures. Ni-based catalysts are promising systems because of their high activity and low cost, but coke formation generally poses a severe problem. Studies of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) indicate that CH/HO gas mixtures react with Ni/CeO(111) surfaces to form OH, CH , and CH O at 300 K. All of these species are easy to form and desorb at temperatures below 700 K when the rate of the MSR process is accelerated. Density functional theory (DFT) modeling of the reaction over ceria-supported small Ni nanoparticles predicts relatively low activation barriers between 0.3 and 0.7 eV for complete dehydrogenation of methane to carbon and the barrierless activation of water at interfacial Ni sites. Hydroxyls resulting from water activation allow for CO formation via a COH intermediate with a barrier of about 0.9 eV, which is much lower than that through a pathway involving lattice oxygen from ceria. Neither methane nor water activation is a rate-determining step, and the OH-assisted CO formation through the COH intermediate constitutes a low-barrier pathway that prevents carbon accumulation. The interactions between Ni and the ceria support and the low metal loading are crucial for the reaction to proceed in a coke-free and efficient way. These results pave the way for further advances in the design of stable and highly active Ni-based catalysts for hydrogen production.
甲烷蒸汽重整(MSR)在从天然气生产合成气和氢气的过程中起着关键作用。对将氢气用于燃料电池应用的兴趣日益浓厚,这就要求开发在降低的操作温度下具有高活性的催化剂。镍基催化剂因其高活性和低成本而成为有前景的体系,但积炭问题通常很严重。常压X射线光电子能谱(AP-XPS)研究表明,CH/HO气体混合物在300K时与Ni/CeO(111)表面反应形成OH、CH 、和CH O。当MSR过程的速率加快时,所有这些物种在低于700K的温度下都易于形成和解吸。对氧化铈负载的小镍纳米颗粒上的反应进行密度泛函理论(DFT)建模预测,完全脱氢生成碳的活化能垒相对较低,在0.3至0.7eV之间,并且在界面镍位点上水的活化无势垒。水活化产生的羟基通过约0.9eV势垒的COH中间体生成CO,这比通过涉及氧化铈晶格氧的途径要低得多。甲烷活化和水活化都不是速率决定步骤,通过COH中间体的OH辅助CO形成构成了一个低势垒途径,可防止碳积累。镍与氧化铈载体之间的相互作用以及低金属负载量对于反应以无焦且高效的方式进行至关重要。这些结果为进一步设计用于制氢的稳定且高活性的镍基催化剂铺平了道路。