Lozano-Reis Pablo, Gamallo Pablo, Sayós Ramón, Illas Francesc
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain.
ACS Catal. 2024 Jan 30;14(4):2284-2299. doi: 10.1021/acscatal.3c05336. eCollection 2024 Feb 16.
A detailed multiscale study of the mechanism of CO hydrogenation on a well-defined Ni/CeO model catalyst is reported that couples periodic density functional theory (DFT) calculations with kinetic Monte Carlo (kMC) simulations. The study includes an analysis of the role of Eley-Rideal elementary steps for the water formation step, which are usually neglected on the overall picture of the mechanism, catalytic activity, and selectivity. The DFT calculations for the chosen model consisting of a Ni cluster supported on CeO (111) show large enough adsorption energies along with low energy barriers that suggest this catalyst to be a good option for high selective CO methanation. The kMC simulations results show a synergic effect between the two 3-fold hollow sites of the supported Ni cluster with some elementary reactions dominant in one site, while other reactions prefer the another, nearly equivalent site. This effect is even more evident for the simulations explicitly including Eley-Rideal steps. The kMC simulations reveal that CO is formed via the dissociative pathway of the reverse water-gas shift reaction, while methane is formed via a CO → CO → HCO → CH → CH → CH → CH mechanism. Overall, our results show the importance of including the Eley-Rideal reactions and point to small Ni clusters supported on the CeO (111) surface as potential good catalysts for high selective CO methanation under mild conditions, while very active and selective toward CO formation at higher temperatures.
本文报道了对一种明确的Ni/CeO模型催化剂上CO加氢机理的详细多尺度研究,该研究将周期性密度泛函理论(DFT)计算与动力学蒙特卡罗(kMC)模拟相结合。该研究包括对Eley-Rideal基元步骤在水生成步骤中的作用进行分析,而这些步骤在机理、催化活性和选择性的整体图景中通常被忽略。对由负载在CeO(111)上Ni团簇组成的所选模型进行的DFT计算显示,其具有足够大的吸附能以及较低的能垒,这表明该催化剂是高选择性CO甲烷化的良好选择。kMC模拟结果表明,负载的Ni团簇的两个3重中空位点之间存在协同效应,一些基元反应在一个位点占主导,而其他反应则更倾向于另一个几乎等效的位点。对于明确包含Eley-Rideal步骤的模拟,这种效应更为明显。kMC模拟表明,CO是通过逆水煤气变换反应的解离途径形成的,而甲烷是通过CO→CO→HCO→CH→CH→CH→CH机理形成的。总体而言,我们的结果表明了包含Eley-Rideal反应的重要性,并指出负载在CeO(111)表面的小Ni团簇是在温和条件下高选择性CO甲烷化的潜在良好催化剂,而在较高温度下对CO生成具有非常高的活性和选择性。