Suppr超能文献

利用网络可靠性理解国际食品贸易动态。

Using Network Reliability to Understand International Food Trade Dynamics.

作者信息

Nath Madhurima, Venkatramanan Srinivasan, Kaperick Bryan, Eubank Stephen, Marathe Madhav V, Marathe Achla, Adiga Abhijin

机构信息

Virginia Tech, Blacksburg, VA 24060, USA.

University of Virginia, Charlottesville, VA 22904, USA.

出版信息

Complex Netw Appl VII (2018). 2019;812:524-535. Epub 2018 Dec 2.

Abstract

Understanding the structural and dynamical properties of food networks is critical for food security and social welfare. Here, we analyze international trade networks corresponding to four solanaceous crops obtained using the Food and Agricultural Organization trade database using Moore-Shannon network reliability. We present a novel approach to identify important dynamics-induced clusters of highly-connected nodes in a directed weighted network. Our analysis shows that the structure and dynamics can greatly vary across commodities. However, a consistent pattern that we observe in these commodity-specific networks is that almost all clusters that are formed are between adjacent countries in regions where liberal bilateral trade relations exist. Our analysis of networks of different years shows that intensification of trade has led to increased size of clusters, which implies that the number of countries spared from the network effects of disruption is reducing. Finally, applying this method to the aggregate network obtained by combining the four networks reveals clusters very different from those found in the constituent networks.

摘要

了解食物网络的结构和动态特性对粮食安全和社会福利至关重要。在此,我们使用摩尔 - 香农网络可靠性分析了对应于四种茄科作物的国际贸易网络,这些网络是通过联合国粮食及农业组织贸易数据库获取的。我们提出了一种新颖的方法,用于在有向加权网络中识别由重要动态因素引起的高度连接节点的集群。我们的分析表明,不同商品的结构和动态差异很大。然而,在这些特定商品网络中我们观察到的一个一致模式是,几乎所有形成的集群都存在于存在双边自由贸易关系地区的相邻国家之间。我们对不同年份网络的分析表明,贸易强化导致集群规模增大,这意味着免受网络中断影响的国家数量正在减少。最后,将此方法应用于通过合并这四个网络获得的总网络,发现的集群与在组成网络中发现的集群非常不同。

相似文献

1
Using Network Reliability to Understand International Food Trade Dynamics.
Complex Netw Appl VII (2018). 2019;812:524-535. Epub 2018 Dec 2.
3
Microstructural Characteristics of the Weighted and Directed International Crop Trade Networks.
Entropy (Basel). 2021 Sep 26;23(10):1250. doi: 10.3390/e23101250.
4
Understanding Global Rice Trade Flows: Network Evolution and Implications.
Foods. 2023 Sep 2;12(17):3298. doi: 10.3390/foods12173298.
5
Agricultural trade networks and patterns of economic development.
PLoS One. 2012;7(7):e39756. doi: 10.1371/journal.pone.0039756. Epub 2012 Jul 2.
6
Multinetwork of international trade: a commodity-specific analysis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046104. doi: 10.1103/PhysRevE.81.046104. Epub 2010 Apr 9.
7
Farming and the geography of nutrient production for human use: a transdisciplinary analysis.
Lancet Planet Health. 2017 Apr;1(1):e33-e42. doi: 10.1016/S2542-5196(17)30007-4.
8
Evolving community structure in the international pesticide trade networks.
Heliyon. 2023 Oct 20;9(11):e21076. doi: 10.1016/j.heliyon.2023.e21076. eCollection 2023 Nov.
9
The spatial and temporal dynamics of global meat trade networks.
Sci Rep. 2020 Oct 7;10(1):16657. doi: 10.1038/s41598-020-73591-2.
10
Global maize trade and food security: implications from a social network model.
Risk Anal. 2013 Dec;33(12):2168-78. doi: 10.1111/risa.12064. Epub 2013 May 8.

本文引用的文献

1
Determining whether a class of random graphs is consistent with an observed contact network.
J Theor Biol. 2018 Mar 7;440:121-132. doi: 10.1016/j.jtbi.2017.12.021. Epub 2017 Dec 29.
2
Ecology, Worldwide Spread, and Management of the Invasive South American Tomato Pinworm, Tuta absoluta: Past, Present, and Future.
Annu Rev Entomol. 2018 Jan 7;63:239-258. doi: 10.1146/annurev-ento-031616-034933. Epub 2017 Oct 4.
3
Ecological Networks in Stored Grain: Key Postharvest Nodes for Emerging Pests, Pathogens, and Mycotoxins.
Bioscience. 2015 Oct 1;65(10):985-1002. doi: 10.1093/biosci/biv122. Epub 2015 Sep 9.
4
Resilience and reactivity of global food security.
Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6902-7. doi: 10.1073/pnas.1507366112. Epub 2015 May 11.
5
Network reliability: the effect of local network structure on diffusive processes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052810. doi: 10.1103/PhysRevE.88.052810. Epub 2013 Nov 21.
6
Complexity of the international agro-food trade network and its impact on food safety.
PLoS One. 2012;7(5):e37810. doi: 10.1371/journal.pone.0037810. Epub 2012 May 31.
7
Modularity and community structure in networks.
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82. doi: 10.1073/pnas.0601602103. Epub 2006 May 24.
8
Community detection in complex networks using extremal optimization.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):027104. doi: 10.1103/PhysRevE.72.027104. Epub 2005 Aug 24.
9
Detecting fuzzy community structures in complex networks with a Potts model.
Phys Rev Lett. 2004 Nov 19;93(21):218701. doi: 10.1103/PhysRevLett.93.218701. Epub 2004 Nov 15.
10
Topology of the world trade web.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 2):015101. doi: 10.1103/PhysRevE.68.015101. Epub 2003 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验