Department of Pharmacology & Physiology, Georgetown University, Washington,, District of Columbia, USA.
Interdisciplinary Program in Neuroscience, Georgetown University, Washington,, District of Columbia, USA.
Epilepsia. 2021 Sep;62(9):2283-2296. doi: 10.1111/epi.17016. Epub 2021 Jul 26.
The nucleus reticularis of the thalamus (nRT) is most studied in epilepsy for its role in the genesis of absence seizures; much less is known regarding its role in other seizure types, including those originating in limbic structures and the temporal lobe. As it is a major source of inhibitory input to higher order thalamic nuclei, stimulation of the nRT may be an effective strategy to disrupt seizure activity that requires thalamic engagement.
We recorded single unit activity from the nRT prior to and after infusion of bicuculline into the area tempestas. We monitored single unit activity time-locked with interictal spikes. We optogenetically activated the nRT in both the area tempestas and amygdala kindling models. We tested a role for projections from the nRT to higher order midline thalamic nuclei through the use of retrogradely trafficked viral vector.
Mean firing rate in the nRT was decreased after infusion of bicuculline into the area tempestas as compared to the preinfusion baseline. nRT unit firing in response to interictal spikes was heterogeneous, with an approximately equal proportion of neurons displaying (1) no change in firing, (2) increased firing, and (3) decreasing firing. Optogenetic activation of the nRT significantly suppressed seizure activity in both the area tempestas and amygdala kindling models. Optogenetic activation of contralaterally targeting projections but not ipsilaterally targeting projections from the nRT to the midline thalamus significantly suppressed seizures in the kindling model.
Although the nRT is typically thought of in the context of absence seizures, our data show that it may be a viable target for other seizure types. In two models that recapitulate the seizure types seen in temporal lobe epilepsy, nRT activation suppressed both electrographic and behavioral seizures. These data suggest that the nRT should be considered more broadly in the context of epilepsy.
丘脑网状核(nRT)在癫痫中研究最多的是其在失神发作中的作用;而对于其在其他类型发作中的作用,包括起源于边缘结构和颞叶的发作,知之甚少。由于它是高级丘脑核抑制性输入的主要来源,刺激 nRT 可能是一种有效的策略,可以破坏需要丘脑参与的发作活动。
我们在 tempestas 区注射 bicuculline 前后记录 nRT 的单个单位活动。我们监测与发作间期棘波时间锁定的单个单位活动。我们在 tempestas 区和杏仁核点燃模型中光激活 nRT。我们通过使用逆行运输病毒载体研究 nRT 到高级中线丘脑核的投射的作用。
与预注射基线相比,tempestas 区注射 bicuculline 后 nRT 的平均放电率降低。nRT 单位对发作间期棘波的反应放电是异质的,大约有相同比例的神经元显示(1)放电无变化,(2)放电增加,和(3)放电减少。nRT 的光遗传学激活显著抑制了 tempestas 区和杏仁核点燃模型中的发作活动。nRT 到中线丘脑的对侧靶向投射而不是同侧靶向投射的光遗传学激活显著抑制了点燃模型中的发作。
尽管 nRT 通常被认为是在失神发作的背景下,但我们的数据表明,它可能是其他发作类型的可行靶点。在两种模拟颞叶癫痫中所见发作类型的模型中,nRT 激活抑制了电描记和行为性发作。这些数据表明,nRT 在癫痫的背景下应被更广泛地考虑。