Suppr超能文献

基于可编程机械活性水凝胶的材料

Programmable Mechanically Active Hydrogel-Based Materials.

作者信息

Dong Yixiao, Ramey-Ward Allison N, Salaita Khalid

机构信息

Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, 30332, USA.

出版信息

Adv Mater. 2021 Nov;33(46):e2006600. doi: 10.1002/adma.202006600. Epub 2021 Jul 26.

Abstract

Programmable mechanically active materials (MAMs) are defined as materials that can sense and transduce external stimuli into mechanical outputs or conversely that can detect mechanical stimuli and respond through an optical change or other change in the appearance of the material. Programmable MAMs are a subset of responsive materials and offer potential in next generation robotics and smart systems. This review specifically focuses on hydrogel-based MAMs because of their mechanical compliance, programmability, biocompatibility, and cost-efficiency. First, the composition of hydrogel MAMs along with the top-down and bottom-up approaches used for programming these materials are discussed. Next, the fundamental principles for engineering responsivity in MAMS, which includes optical, thermal, magnetic, electrical, chemical, and mechanical stimuli, are considered. Some advantages and disadvantages of different responsivities are compared. Then, to conclude, the emerging applications of hydrogel-based MAMs from recently published literature, as well as the future outlook of MAM studies, are summarized.

摘要

可编程机械活性材料(MAMs)被定义为能够感知外部刺激并将其转化为机械输出的材料,或者相反,能够检测机械刺激并通过光学变化或材料外观的其他变化做出响应的材料。可编程MAMs是响应材料的一个子集,在下一代机器人技术和智能系统中具有潜力。由于其机械柔顺性、可编程性、生物相容性和成本效益,本综述特别关注基于水凝胶的MAMs。首先,讨论了水凝胶MAMs的组成以及用于对这些材料进行编程的自上而下和自下而上的方法。接下来,考虑了在MAMs中设计响应性的基本原理,其中包括光学、热、磁、电、化学和机械刺激。比较了不同响应性的一些优缺点。然后,作为总结,总结了基于水凝胶的MAMs在最近发表的文献中的新兴应用以及MAM研究的未来展望。

相似文献

1
Programmable Mechanically Active Hydrogel-Based Materials.
Adv Mater. 2021 Nov;33(46):e2006600. doi: 10.1002/adma.202006600. Epub 2021 Jul 26.
2
Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
Acc Chem Res. 2022 Jun 7;55(11):1533-1545. doi: 10.1021/acs.accounts.2c00046. Epub 2022 Apr 12.
3
Smart Actuators and Adhesives for Reconfigurable Matter.
Acc Chem Res. 2017 Apr 18;50(4):691-702. doi: 10.1021/acs.accounts.6b00612. Epub 2017 Mar 6.
4
Bioinspired Stimuli-Responsive Materials for Soft Actuators.
Biomimetics (Basel). 2024 Feb 21;9(3):128. doi: 10.3390/biomimetics9030128.
5
From design to applications of stimuli-responsive hydrogel strain sensors.
J Mater Chem B. 2020 Apr 29;8(16):3171-3191. doi: 10.1039/c9tb02692d.
6
Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks.
ACS Appl Mater Interfaces. 2022 Mar 9;14(9):11834-11841. doi: 10.1021/acsami.1c24702. Epub 2022 Feb 22.
7
Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces.
Adv Colloid Interface Sci. 2022 Oct;308:102749. doi: 10.1016/j.cis.2022.102749. Epub 2022 Aug 9.

引用本文的文献

1
Alginate Sphere-Based Soft Actuators.
Gels. 2025 Jun 5;11(6):432. doi: 10.3390/gels11060432.
2
Mechanobiomaterials: Harnessing mechanobiology principles for tissue repair and regeneration.
Mechanobiol Med. 2024 May 16;2(3):100079. doi: 10.1016/j.mbm.2024.100079. eCollection 2024 Sep.
3
Physical stimuli-responsive DNA hydrogels: design, fabrication strategies, and biomedical applications.
J Nanobiotechnology. 2025 Mar 22;23(1):233. doi: 10.1186/s12951-025-03237-w.
4
Nanofibrous Peptide Hydrogels Leveraging Histidine to Modulate pH-Responsive Supramolecular Assembly and Antibody Release.
Biomacromolecules. 2025 Jan 13;26(1):490-502. doi: 10.1021/acs.biomac.4c01296. Epub 2024 Dec 30.
5
Stretchable and Shape-Transformable Organohydrogel with Gallium Mesh Frame.
Gels. 2024 Nov 26;10(12):769. doi: 10.3390/gels10120769.
6
In Situ Detection of Neuroinflammation using Multi-cellular 3D Neurovascular Unit-on-a-Chip.
Adv Funct Mater. 2023 Nov 9;33(46). doi: 10.1002/adfm.202304382. Epub 2023 Sep 1.
7
Hydrogel morphogenesis induced by force-controlled growth.
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2402587121. doi: 10.1073/pnas.2402587121. Epub 2024 Jun 26.
9
Tough Hydrogels for Load-Bearing Applications.
Adv Sci (Weinh). 2024 Mar;11(12):e2307404. doi: 10.1002/advs.202307404. Epub 2024 Jan 15.
10
Cartilage-on-a-chip with magneto-mechanical transformation for osteoarthritis recruitment.
Bioact Mater. 2023 Nov 8;33:61-68. doi: 10.1016/j.bioactmat.2023.10.030. eCollection 2024 Mar.

本文引用的文献

1
Redox-responsive supramolecular polymeric networks having double-threaded inclusion complexes.
Chem Sci. 2020 Mar 16;11(17):4322-4331. doi: 10.1039/c9sc05589d.
2
Manufacturing and Characterization of Zn-WC as Potential Biodegradable Material.
Procedia Manuf. 2019;34:247-251. doi: 10.1016/j.promfg.2019.06.146. Epub 2019 Jul 18.
3
Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues.
Sci Robot. 2018 May 30;3(18). doi: 10.1126/scirobotics.aat4440.
4
Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity.
Sci Robot. 2018 Jan 24;3(14). doi: 10.1126/scirobotics.aar2629.
5
Soft phototactic swimmer based on self-sustained hydrogel oscillator.
Sci Robot. 2019 Aug 21;4(33). doi: 10.1126/scirobotics.aax7112.
6
Insect-scale fast moving and ultrarobust soft robot.
Sci Robot. 2019 Jul 31;4(32). doi: 10.1126/scirobotics.aax1594.
8
Mechanical Stimulation of Adhesion Receptors Using Light-Responsive Nanoparticle Actuators Enhances Myogenesis.
ACS Appl Mater Interfaces. 2020 Aug 12;12(32):35903-35917. doi: 10.1021/acsami.0c08871. Epub 2020 Jul 29.
9
Self-Helical Fiber for Glucose-Responsive Artificial Muscle.
ACS Appl Mater Interfaces. 2020 May 6;12(18):20228-20233. doi: 10.1021/acsami.0c03120. Epub 2020 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验