Zhao Yusen, Xuan Chen, Qian Xiaoshi, Alsaid Yousif, Hua Mutian, Jin Lihua, He Ximin
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Sci Robot. 2019 Aug 21;4(33). doi: 10.1126/scirobotics.aax7112.
Oscillations are widely found in living organisms to generate propulsion-based locomotion often driven by constant ambient conditions, such as phototactic movements. Such environment-powered and environment-directed locomotions may advance fully autonomous remotely steered robots. However, most man-made oscillations require nonconstant energy input and cannot perform environment-dictated movement. Here, we report a self-sustained soft oscillator that exhibits perpetual and untethered locomotion as a phototactic soft swimming robot, remotely fueled and steered by constant visible light. This particular out-of-equilibrium actuation arises from a self-shadowing-enabled negative feedback loop inherent in the dynamic light-material interactions, promoted by the fast and substantial volume change of the photoresponsive hydrogel. Our analytical model and governing equation unveil the oscillation mechanism and design principle with key parameters identified to tune the dynamics. On this autonomous oscillator platform, we establish a broadly applicable principle for converting a continuous input into a discontinuous output. The modular design can be customized to accommodate various forms of input energy and to generate diverse oscillatory behaviors. The hydrogel oscillator showcases agile life-like omnidirectional motion in the entire three-dimensional space with near-infinite degrees of freedom. The large force generated by the powerful and long-lasting oscillation can sufficiently overcome water damping and effectively self-propel away from a light source. Such a hydrogel oscillator-based all-soft swimming robot, named OsciBot, demonstrated high-speed and controllable phototactic locomotion. This autonomous robot is battery free, deployable, scalable, and integratable. Artificial phototaxis opens broad opportunities in maneuverable marine automated systems, miniaturized transportation, and solar sails.
振荡现象在生物体内广泛存在,用于产生基于推进的运动,这种运动通常由恒定的环境条件驱动,比如趋光运动。这种由环境提供动力并受环境引导的运动,可能会推动完全自主的远程操控机器人的发展。然而,大多数人造振荡需要非恒定的能量输入,并且无法进行受环境支配的运动。在此,我们报告了一种自持式软振荡器,它作为一个趋光性软游泳机器人,能呈现出持续且无束缚的运动,由恒定的可见光远程提供能量并进行操控。这种特殊的非平衡驱动源于动态光 - 材料相互作用中固有的一种基于自遮蔽的负反馈回路,该回路由光响应水凝胶快速且显著的体积变化所促进。我们的分析模型和控制方程揭示了振荡机制以及设计原理,并确定了用于调节动力学的关键参数。在这个自主振荡器平台上,我们建立了一个广泛适用的原理,即将连续输入转换为不连续输出。模块化设计可以定制,以适应各种形式的输入能量,并产生不同的振荡行为。水凝胶振荡器在整个具有近乎无限自由度的三维空间中展示出敏捷的、类似生命的全方位运动。强大且持久的振荡所产生的巨大力量能够充分克服水的阻尼,并有效地使自身远离光源。这种基于水凝胶振荡器的全软游泳机器人,名为OsciBot,展示了高速且可控的趋光运动。这个自主机器人无需电池,可部署、可扩展且可集成。人工趋光性在可操控的海洋自动化系统、小型化运输和太阳帆等领域开辟了广阔的机遇。
Sci Robot. 2019-8-21
Angew Chem Int Ed Engl. 2021-9-6
Angew Chem Int Ed Engl. 2023-6-19
Adv Sci (Weinh). 2024-6
Nanomicro Lett. 2025-8-19
Nat Commun. 2025-8-15
Commun Mater. 2025
Nat Commun. 2025-7-24
Sci Adv. 2025-7-11
Adv Sci (Weinh). 2025-7
Gels. 2025-3-27
Small Sci. 2021-1-18