Gao Zhenyang, Wang Hongze, Ren Pengyuan, Zheng Gengchen, Lu Yang, Peng Bokang, Tang Zijue, Wu Yi, Wang Haowei
State Key Labortory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Mater Horiz. 2024 Aug 28;11(17):4037-4053. doi: 10.1039/d4mh00570h.
Interfaces between different materials crucially determine the performance of multi-material systems, impacting a wide range of industries. Currently, precisely programming interfaces with distinct properties at different localized interface positions remains a challenge, leading to limited interface adaptability and unpredictable interface failures, thus hindering the development of next-generation materials and engineering systems with highly customizable multiphysical interface performances. Our research introduces programmable "metainterfaces" for the first time, featuring engineerable biometric architectonics that allows for mechanically, thermally, and actively programmed distribution of interfacial effects by its orientation, driven by artificial intelligence. Enabled by metainterfaces, we showcased improved mechanical properties of future composite metamaterials by programming interface resistance customized to the decoupling modes of distinct lattice topologies. Additionally, we demonstrate enhanced and programmable impact mechanics in fish scale assemblies equipped with pre-programmed metainterface sheets. The proposed metainterface also allows for coolant flow programming in thermal management systems, opening new avenues for development of highly customizable thermos-mechanical systems. Additionally, we introduce digitally controlled "metadisks" enabled by metainterfaces as novel solutions for actively programmable interface systems in robotics, offering real-time adaptive and intelligent interfacial mechanics. This research sets the foundation for next-generation multi-material systems with precisely programmed interfacial effects, offering broad applicability in areas such as smart materials, advanced thermal management, and intelligent robotics.
不同材料之间的界面对于多材料系统的性能起着至关重要的决定作用,影响着广泛的行业。目前,在不同的局部界面位置精确地对具有不同特性的界面进行编程仍然是一项挑战,这导致界面适应性有限且界面故障不可预测,从而阻碍了具有高度可定制多物理界面性能的下一代材料和工程系统的发展。我们的研究首次引入了可编程的“元界面”,其具有可设计的生物特征结构,通过人工智能驱动,能够根据其取向对界面效应进行机械、热和主动编程分布。借助元界面,我们通过对与不同晶格拓扑解耦模式定制的界面阻力进行编程,展示了未来复合超材料改进的机械性能。此外,我们在配备预编程元界面片的鱼鳞组件中展示了增强的可编程冲击力学。所提出的元界面还允许在热管理系统中进行冷却剂流编程,为高度可定制的热机械系统的开发开辟了新途径。此外,我们引入了由元界面实现的数字控制“元盘”,作为机器人中主动可编程界面系统的新颖解决方案,提供实时自适应和智能界面力学。这项研究为具有精确编程界面效应的下一代多材料系统奠定了基础,在智能材料、先进热管理和智能机器人等领域具有广泛的适用性。