Facultad de Telemática, Universidad de Colima, Colima, Colima, 28040, México.
Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara, Jalisco, 44430, México.
Plant Genome. 2021 Nov;14(3):e20122. doi: 10.1002/tpg2.20122. Epub 2021 Jul 26.
Deep learning (DL) is revolutionizing the development of artificial intelligence systems. For example, before 2015, humans were better than artificial machines at classifying images and solving many problems of computer vision (related to object localization and detection using images), but nowadays, artificial machines have surpassed the ability of humans in this specific task. This is just one example of how the application of these models has surpassed human abilities and the performance of other machine-learning algorithms. For this reason, DL models have been adopted for genomic selection (GS). In this article we provide insight about the power of DL in solving complex prediction tasks and how combining GS and DL models can accelerate the revolution provoked by GS methodology in plant breeding. Furthermore, we will mention some trends of DL methods, emphasizing some areas of opportunity to really exploit the DL methodology in GS; however, we are aware that considerable research is required to be able not only to use the existing DL in conjunction with GS, but to adapt and develop DL methods that take the peculiarities of breeding inputs and GS into consideration.
深度学习(DL)正在彻底改变人工智能系统的开发。例如,在 2015 年之前,人类在图像分类和解决许多计算机视觉问题(与使用图像进行目标定位和检测相关)方面优于人工机器,但如今,人工机器在这一特定任务上已经超越了人类的能力。这只是这些模型的应用如何超越人类能力和其他机器学习算法性能的一个例子。出于这个原因,DL 模型已被用于基因组选择(GS)。在本文中,我们提供了关于 DL 解决复杂预测任务的能力的见解,以及如何结合 GS 和 DL 模型来加速 GS 方法在植物育种中引发的革命。此外,我们将提到一些 DL 方法的趋势,强调一些有机会的领域,以便真正在 GS 中利用 DL 方法;然而,我们意识到需要进行大量的研究,不仅要能够将现有的 DL 与 GS 结合使用,还要适应和开发考虑到育种投入和 GS 特点的 DL 方法。