Suppr超能文献

在岭回归框架下利用迁移学习优化基因组预测。

Optimizing genomic prediction with transfer learning under a ridge regression framework.

作者信息

Montesinos-López Osval A, Barajas-Ramirez Eduardo A, Salinas-Ruiz Josafhat, Montesinos-López Abelardo, Gerard Guillermo, Vitale Paolo, Dreisigacker Susanne, Pierre Carolina Saint, Crossa José

机构信息

Facultad de Telemática, Universidad de Colima, Colima, México.

Colegio de Postgraduados Campus Córdoba, Veracruz, Mexico.

出版信息

Plant Genome. 2025 Sep;18(3):e70049. doi: 10.1002/tpg2.70049.

Abstract

Genomic selection (GS) is a predictive plant and animal methodology that allows the selection of plants and animals based on predictions without the need to measure the phenotype. However, its practical application requires challenging prediction accuracy due to the noise observations collected in experiments in these areas. Many strategies and approaches have been proposed to improve the prediction accuracy of this methodology. This paper explores the use of transfer learning in the context of GS. Transfer learning with (1) ridge regression (RR) (Transfer RR) and (2) analytic RR (ARR) (Transfer ARR) were applied from cultivars in the proxy environment to predict those cultivars in the goal environments. Also, we compared the performance of models RR and ARR without transfer learning. We used 11 real multi-environment datasets (wheat and rice) and evaluated them in terms of Pearson's correlation (Cor) and normalized root mean square error (NRMSE). Our study shows empirical evidence that the Transfer RR or Transfer ARR approaches significantly enhanced predictive performance. Across the datasets, Transfer RR (or Transfer ARR) method improved Cor by 22.962% and NRMSE by 5.757%, in comparison to models RR and ARR. These results underscore the potential of Transfer RR (or Transfer ARR) when enhancing predictive accuracy in this context.

摘要

基因组选择(GS)是一种预测性的动植物方法,它允许在无需测量表型的情况下,基于预测结果来选择动植物。然而,由于在这些领域的实验中收集到的观测数据存在噪声,其实际应用需要具有挑战性的预测准确性。人们已经提出了许多策略和方法来提高这种方法的预测准确性。本文探讨了在基因组选择背景下使用迁移学习的情况。将带有(1)岭回归(RR)的迁移学习(迁移RR)和(2)解析RR(ARR)的迁移学习(迁移ARR)应用于代理环境中的品种,以预测目标环境中的那些品种。此外,我们还比较了无迁移学习的RR和ARR模型的性能。我们使用了11个真实的多环境数据集(小麦和水稻),并根据皮尔逊相关性(Cor)和归一化均方根误差(NRMSE)对它们进行了评估。我们的研究表明,有经验证据表明迁移RR或迁移ARR方法显著提高了预测性能。与RR和ARR模型相比,在所有数据集中,迁移RR(或迁移ARR)方法使Cor提高了22.962%,使NRMSE降低了5.757%。这些结果强调了迁移RR(或迁移ARR)在提高这种情况下的预测准确性方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验