Suppr超能文献

人工智能(AI)方法在作物研究中的应用综述。

Review of applications of artificial intelligence (AI) methods in crop research.

机构信息

Department of Vegetables and Spice Crops, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, 736165, West Bengal, India.

Indian Statistical Institute, Kolkata, 700108, West Bengal, India.

出版信息

J Appl Genet. 2024 May;65(2):225-240. doi: 10.1007/s13353-023-00826-z. Epub 2024 Jan 13.

Abstract

Sophisticated and modern crop improvement techniques can bridge the gap for feeding the ever-increasing population. Artificial intelligence (AI) refers to the simulation of human intelligence in machines, which refers to the application of computational algorithms, machine learning (ML) and deep learning (DL) techniques. This is aimed to generalise patterns and relationships from historical data, employing various mathematical optimisation techniques thus making prediction models for facilitating selection of superior genotypes. These techniques are less resource intensive and can solve the problem based on the analysis of large-scale phenotypic datasets. ML for genomic selection (GS) uses high-throughput genotyping technologies to gather genetic information on a large number of markers across the genome. The prediction of GS models is based on the mathematical relation between genotypic and phenotypic data from the training population. ML techniques have emerged as powerful tools for genome editing through analysing large-scale genomic data and facilitating the development of accurate prediction models. Precise phenotyping is a prerequisite to advance crop breeding for solving agricultural production-related issues. ML algorithms can solve this problem through generating predictive models, based on the analysis of large-scale phenotypic datasets. DL models also have the potential reliability of precise phenotyping. This review provides a comprehensive overview on various ML and DL models, their applications, potential to enhance the efficiency, specificity and safety towards advanced crop improvement protocols such as genomic selection, genome editing, along with phenotypic prediction to promote accelerated breeding.

摘要

先进而现代的作物改良技术可以弥合不断增长的人口的粮食供应缺口。人工智能 (AI) 是指在机器中模拟人类智能,指的是应用计算算法、机器学习 (ML) 和深度学习 (DL) 技术。其目的是从历史数据中概括模式和关系,运用各种数学优化技术,从而为促进优良基因型选择建立预测模型。这些技术资源需求较少,可以根据大规模表型数据集的分析来解决问题。用于基因组选择 (GS) 的 ML 使用高通量基因分型技术来收集基因组中大量标记的遗传信息。GS 模型的预测基于来自训练群体的基因型和表型数据之间的数学关系。ML 技术通过分析大规模基因组数据并促进开发准确的预测模型,已成为基因组编辑的强大工具。精确的表型分析是推进作物改良以解决农业生产相关问题的前提。ML 算法可以通过分析大规模表型数据集来解决这个问题,生成预测模型。DL 模型也具有精确表型预测的潜在可靠性。本综述全面概述了各种 ML 和 DL 模型及其应用,以及它们在提高基因组选择、基因组编辑等先进作物改良方案的效率、特异性和安全性方面的潜力,同时还可以进行表型预测,以促进加速育种。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验