Columbia University Department of Epidemiology, New York, NY.
Department of Population Health, NYU Grossman School of Medicine, New York, NY.
Epidemiology. 2021 Nov 1;32(6):868-876. doi: 10.1097/EDE.0000000000001404.
Hundreds of laws aimed at reducing inappropriate prescription opioid dispensing have been implemented in the United States, yet heterogeneity in provisions and their simultaneous implementation have complicated evaluation of impacts. We apply a hypothesis-generating, multistage, machine-learning approach to identify salient law provisions and combinations associated with dispensing rates to test in future research.
Using 162 prescription opioid law provisions capturing prescription drug monitoring program (PDMP) access, reporting and administration features, pain management clinic provisions, and prescription opioid limits, we used regularization approaches and random forest models to identify laws most predictive of county-level and high-dose dispensing. We stratified analyses by overdose epidemic phases-the prescription opioid phase (2006-2009), heroin phase (2010-2012), and fentanyl phase (2013-2016)-to further explore pattern shifts over time.
PDMP patient data access provisions most consistently predicted high-dispensing and high-dose dispensing counties. Pain management clinic-related provisions did not generally predict dispensing measures in the prescription opioid phase but became more discriminant of high dispensing and high-dose dispensing counties over time, especially in the fentanyl period. Predictive performance across models was poor, suggesting prescription opioid laws alone do not strongly predict dispensing.
Our systematic analysis of 162 law provisions identified patient data access and several pain management clinic provisions as predictive of county prescription opioid dispensing patterns. Future research employing other types of study designs is needed to test these provisions' causal relationships with inappropriate dispensing and to examine potential interactions between PDMP access and pain management clinic provisions. See video abstract at, http://links.lww.com/EDE/B861.
美国已经实施了数百项旨在减少不当处方阿片类药物配给的法律,但规定的异质性及其同时实施使得评估影响变得复杂。我们应用假设生成、多阶段、机器学习方法来识别与配药率相关的显著法律规定和组合,以在未来的研究中进行测试。
我们使用了 162 项处方阿片类药物法律规定,这些规定涵盖了处方药物监测计划(PDMP)的访问、报告和管理功能、疼痛管理诊所的规定以及处方阿片类药物的限制,我们使用正则化方法和随机森林模型来识别对县一级和高剂量配药最具预测性的法律规定。我们按药物过量流行阶段(处方阿片类药物阶段[2006-2009 年]、海洛因阶段[2010-2012 年]和芬太尼阶段[2013-2016 年])对分析进行分层,以进一步探索随时间的模式变化。
PDMP 患者数据访问规定最一致地预测了高配药和高剂量配药的县。在处方阿片类药物阶段,与疼痛管理诊所相关的规定通常不能预测配药措施,但随着时间的推移,这些规定对高配药和高剂量配药的县的区分能力更强,尤其是在芬太尼阶段。不同模型的预测性能都很差,这表明单独的处方阿片类药物法律并不能强烈预测配药情况。
我们对 162 项法律规定进行了系统分析,确定了患者数据访问和一些疼痛管理诊所的规定可以预测县一级的处方阿片类药物配药模式。需要采用其他类型的研究设计来进行未来的研究,以测试这些规定与不适当配药之间的因果关系,并研究 PDMP 访问和疼痛管理诊所规定之间的潜在相互作用。