Suppr超能文献

精氨酸和琥珀酸盐的共代谢驱动共生固氮。

Co-catabolism of arginine and succinate drives symbiotic nitrogen fixation.

机构信息

Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.

出版信息

Mol Syst Biol. 2020 Jun;16(6):e9419. doi: 10.15252/msb.20199419.

Abstract

Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen-fixing organisms is an incomplete knowledge of metabolic interactions between microbe and plant. In contrast to the previously assumed supply of only succinate, we describe here the CATCH-N cycle as a novel metabolic pathway that co-catabolizes plant-provided arginine and succinate to drive the energy-demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. Using systems biology, isotope labeling studies and transposon sequencing in conjunction with biochemical characterization, we uncovered highly redundant network components of the CATCH-N cycle including transaminases that interlink the co-catabolism of arginine and succinate. The CATCH-N cycle uses N as an additional sink for reductant and therefore delivers up to 25% higher yields of nitrogen than classical arginine catabolism-two alanines and three ammonium ions are secreted for each input of arginine and succinate. We argue that the CATCH-N cycle has evolved as part of a synergistic interaction to sustain bacterial metabolism in the microoxic and highly acid environment of symbiosomes. Thus, the CATCH-N cycle entangles the metabolism of both partners to promote symbiosis. Our results provide a theoretical framework and metabolic blueprint for the rational design of plants and plant-associated organisms with new properties to improve nitrogen fixation.

摘要

从细菌和作物植物共生体中涌现的生物固氮有望提高农业的可持续性。工程化固氮生物的最大障碍之一是对微生物和植物之间代谢相互作用的了解不完整。与之前假设的仅提供琥珀酸盐不同,我们在这里将 CATCH-N 循环描述为一种新的代谢途径,该途径共代谢植物提供的精氨酸和琥珀酸盐,以驱动共生根瘤菌中能量需求高的共生固氮过程。使用系统生物学、同位素标记研究和转座子测序结合生化特性分析,我们揭示了 CATCH-N 循环的高度冗余网络组件,包括将精氨酸和琥珀酸盐共代谢相互连接的转氨酶。CATCH-N 循环将 N 用作还原剂的附加汇,因此与经典的精氨酸分解代谢相比,其氮产量提高了高达 25%——每个精氨酸和琥珀酸盐的输入都会分泌两个丙氨酸和三个铵离子。我们认为,CATCH-N 循环是作为协同相互作用的一部分进化而来的,以维持共生体中微氧和高度酸性环境中细菌的代谢。因此,CATCH-N 循环将两个合作伙伴的代谢纠缠在一起以促进共生。我们的研究结果为理性设计具有新特性以提高固氮效率的植物和植物相关生物提供了理论框架和代谢蓝图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da9/7268258/f2a020fba006/MSB-16-e9419-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验