Suppr超能文献

一种新的深度置信网络变体,结合最优特征选择,使用物联网可穿戴医疗设备进行心脏病诊断。

A new variant of deep belief network assisted with optimal feature selection for heart disease diagnosis using IoT wearable medical devices.

机构信息

Department of Computer Applications, College of Engineering, Vadakara, Kerala, India.

Department of Information Technology, Noorul Islam Centre for Higher Education, Thuckalay, Kanyakumari, Tamil Nadu, India.

出版信息

Comput Methods Biomech Biomed Engin. 2022 Mar;25(4):387-411. doi: 10.1080/10255842.2021.1955360. Epub 2021 Jul 26.

Abstract

In this paper, the information related to heart disease using IoT wearable devices is collected from any benchmark site, which is publicly available. With the collected data, feature extraction process is performed initially, in which heart rate, zero crossing rate, and higher order statistical features like standard deviation, median, skewness, kurtosis, variance, mean, peak amplitude, and entropy are extracted. For acquiring most significant features, the optimal feature selection process is implemented. As a novel contribution, the feature selection process is done by the hybrid optimization algorithm called PS-GWO by integrating GWO and PSO. Next, the extracted features are subjected to a famous deep learning algorithm named modified DBN, in which the activation function and number of hidden neurons is optimized using the same developed hybrid algorithm to improve the heart diagnosis accuracy. From the analysis, for the test case 1, the accuracy of the developed PS-GWO-DBN is 60%, 52.5%, 35% and 35% increased than NN, KNN, SVM, and DBN. For test case 2, the accuracy of the proposed PS-GWO-DBN is 26%, 24%, 21.6% and 17% increased than NN, KNN, SVM, and DBN, respectively. The accuracy of the designed PS-GWO-DBN is 26% advanced than NN, 24% advanced than KNN, 21.6% advanced than SVM and 17% advanced than DBN for test case 3. Thus, the proposed heart disease prediction model using PS-GWO-DBN performs better than other classifiers.

摘要

本文从任何公开可用的基准站点收集与心脏疾病相关的物联网可穿戴设备信息。使用收集到的数据,首先进行特征提取过程,提取心率、过零率和高阶统计特征,如标准差、中位数、偏度、峰度、方差、均值、峰值幅度和熵。为了获取最重要的特征,实现了最优特征选择过程。作为一项新颖的贡献,特征选择过程是通过一种名为 PS-GWO 的混合优化算法来完成的,该算法将 GWO 和 PSO 集成在一起。接下来,将提取的特征应用于一种名为改进 DBN 的著名深度学习算法,其中使用相同开发的混合算法优化激活函数和隐藏神经元的数量,以提高心脏诊断的准确性。从分析结果来看,对于案例 1,开发的 PS-GWO-DBN 的准确性比 NN、KNN、SVM 和 DBN 分别提高了 60%、52.5%、35%和 35%。对于案例 2,提出的 PS-GWO-DBN 的准确性比 NN、KNN、SVM 和 DBN 分别提高了 26%、24%、21.6%和 17%。对于案例 3,设计的 PS-GWO-DBN 的准确性比 NN 提高了 26%,比 KNN 提高了 24%,比 SVM 提高了 21.6%,比 DBN 提高了 17%,因此,使用 PS-GWO-DBN 的心脏疾病预测模型比其他分类器表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验