Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 , Jilin Province, China.
Sci Rep. 2021 Jul 26;11(1):15175. doi: 10.1038/s41598-021-94701-8.
Splicing factors (SFs) play critical roles in the pathogenesis of various cancers through regulating tumor-associated alternative splicing (AS) events. However, the clinical value and biological functions of SFs in hepatocellular carcinoma (HCC) remain obscure. In this study, we identified 40 dysregulated SFs in HCC and established a prognostic model composed of four SFs (DNAJC6, ZC3H13, IGF2BP3, DDX19B). The predictive efficiency and independence of the prognostic model were confirmed to be satisfactory. Gene Set Enrichment Analysis (GSEA) illustrated the risk score calculated by our prognostic model was significantly associated with multiple cancer-related pathways and metabolic processes. Furthermore, we constructed the SFs-AS events regulatory network and extracted 108 protein-coding genes from the network for following functional explorations. Protein-protein interaction (PPI) network delineated the potential interactions among these 108 protein-coding genes. GO and KEGG pathway analyses investigated ontology gene sets and canonical pathways enriched by these 108 protein-coding genes. Overlapping the results of GSEA and KEGG, seven pathways were identified to be potential pathways regulated by our prognostic model through triggering aberrant AS events in HCC. In conclusion, the present study established an effective prognostic model based on SFs for HCC patients. Functional explorations of SFs and SFs-associated AS events provided directions to explore biological functions and mechanisms of SFs in HCC tumorigenesis.
剪接因子 (SFs) 通过调节肿瘤相关的可变剪接 (AS) 事件,在多种癌症的发病机制中发挥关键作用。然而,SFs 在肝细胞癌 (HCC) 中的临床价值和生物学功能仍不清楚。在本研究中,我们鉴定了 HCC 中 40 个失调的 SFs,并建立了一个由四个 SFs (DNAJC6、ZC3H13、IGF2BP3、DDX19B) 组成的预后模型。该预后模型的预测效率和独立性得到了令人满意的验证。基因集富集分析 (GSEA) 表明,我们的预后模型计算的风险评分与多种癌症相关途径和代谢过程显著相关。此外,我们构建了 SFs-AS 事件调控网络,并从网络中提取了 108 个编码蛋白的基因进行后续功能探索。蛋白质-蛋白质相互作用 (PPI) 网络描绘了这 108 个编码蛋白基因之间的潜在相互作用。GO 和 KEGG 通路分析研究了这些 108 个编码蛋白基因富集的本体基因集和经典通路。通过重叠 GSEA 和 KEGG 的结果,确定了 7 个可能的通路,这些通路可能通过触发 HCC 中的异常 AS 事件来被我们的预后模型调控。总之,本研究建立了一个基于 SFs 的 HCC 患者有效预后模型。SFs 和 SFs 相关 AS 事件的功能探索为探索 SFs 在 HCC 肿瘤发生中的生物学功能和机制提供了方向。