Department of Psychiatry, Yale University School of Medicine, New Haven, United States.
Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, United States.
Elife. 2021 Jul 20;10:e66968. doi: 10.7554/eLife.66968.
Difficulties in advancing effective patient-specific therapies for psychiatric disorders highlight a need to develop a stable neurobiologically grounded mapping between neural and symptom variation. This gap is particularly acute for psychosis-spectrum disorders (PSD). Here, in a sample of 436 PSD patients spanning several diagnoses, we derived and replicated a dimensionality-reduced symptom space across hallmark psychopathology symptoms and cognitive deficits. In turn, these symptom axes mapped onto distinct, reproducible brain maps. Critically, we found that multivariate brain-behavior mapping techniques (e.g. canonical correlation analysis) do not produce stable results with current sample sizes. However, we show that a univariate brain-behavioral space (BBS) can resolve stable individualized prediction. Finally, we show a proof-of-principle framework for relating personalized BBS metrics with molecular targets via serotonin and glutamate receptor manipulations and neural gene expression maps derived from the Allen Human Brain Atlas. Collectively, these results highlight a stable and data-driven BBS mapping across PSD, which offers an actionable path that can be iteratively optimized for personalized clinical biomarker endpoints.
精神障碍特定有效治疗方法的进展困难凸显了需要在神经和症状变化之间建立稳定的神经生物学基础映射的必要性。对于精神病谱系障碍 (PSD) 来说,这种差距尤为明显。在这里,在跨越多种诊断的 436 名 PSD 患者样本中,我们跨标志性精神病理学症状和认知缺陷得出并复制了一个降维症状空间。反过来,这些症状轴映射到不同的、可重复的大脑图谱上。至关重要的是,我们发现多元脑 - 行为映射技术(例如典型相关分析)在当前样本量下不会产生稳定的结果。然而,我们表明,单变量脑 - 行为空间 (BBS) 可以解决稳定的个性化预测。最后,我们通过通过对来自艾伦人类大脑图谱的血清素和谷氨酸受体操作以及神经基因表达图谱的个性化 BBS 指标与分子靶标进行关联,展示了一个原理证明框架。总的来说,这些结果突出了 PSD 中稳定的和数据驱动的 BBS 映射,为个性化临床生物标志物终点提供了一个可迭代优化的可行路径。