Suppr超能文献

评估抑郁症生物型的证据:方法学的复制和扩展。

Evaluating the evidence for biotypes of depression: Methodological replication and extension of.

机构信息

Department of Psychiatry, Amsterdam UMC, Amsterdam, the Netherlands.

Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.

出版信息

Neuroimage Clin. 2019;22:101796. doi: 10.1016/j.nicl.2019.101796. Epub 2019 Mar 27.

Abstract

BACKGROUND

Psychiatric disorders are highly heterogeneous, defined based on symptoms with little connection to potential underlying biological mechanisms. A possible approach to dissect biological heterogeneity is to look for biologically meaningful subtypes. A recent study Drysdale et al. (2017) showed promising results along this line by simultaneously using resting state fMRI and clinical data and identified four distinct subtypes of depression with different clinical profiles and abnormal resting state fMRI connectivity. These subtypes were predictive of treatment response to transcranial magnetic stimulation therapy.

OBJECTIVE

Here, we attempted to replicate the procedure followed in the Drysdale et al. study and their findings in a different clinical population and a more heterogeneous sample of 187 participants with depression and anxiety. We aimed to answer the following questions: 1) Using the same procedure, can we find a statistically significant and reliable relationship between brain connectivity and clinical symptoms? 2) Is the observed relationship similar to the one found in the original study? 3) Can we identify distinct and reliable subtypes? 4) Do they have similar clinical profiles as the subtypes identified in the original study?

METHODS

We followed the original procedure as closely as possible, including a canonical correlation analysis to find a low dimensional representation of clinically relevant resting state fMRI features, followed by hierarchical clustering to identify subtypes. We extended the original procedure using additional statistical tests, to test the statistical significance of the relationship between resting state fMRI and clinical data, and the existence of distinct subtypes. Furthermore, we examined the stability of the whole procedure using resampling.

RESULTS AND CONCLUSION

As in the original study, we found extremely high canonical correlations between functional connectivity and clinical symptoms, and an optimal three-cluster solution. However, neither canonical correlations nor clusters were statistically significant. On the basis of our extensive evaluations of the analysis methodology used and within the limits of comparison of our sample relative to the sample used in Drysdale et al., we argue that the evidence for the existence of the distinct resting state connectivity-based subtypes of depression should be interpreted with caution.

摘要

背景

精神障碍高度异质,基于症状定义,与潜在的潜在生物学机制几乎没有联系。剖析生物学异质性的一种可能方法是寻找具有生物学意义的亚型。最近的一项研究 Drysdale 等人。(2017 年)通过同时使用静息状态 fMRI 和临床数据取得了有希望的结果,并确定了四种不同的抑郁亚型,其临床表现和静息状态 fMRI 连接异常。这些亚型可以预测经颅磁刺激治疗的反应。

目的

在这里,我们试图复制 Drysdale 等人的研究中遵循的程序及其在不同临床人群和更异质的 187 名抑郁和焦虑患者样本中的发现。我们旨在回答以下问题:1)使用相同的程序,我们能否找到大脑连接与临床症状之间存在统计学意义和可靠的关系?2)观察到的关系是否与原始研究中发现的关系相似?3)我们能否识别出独特且可靠的亚型?4)它们是否具有与原始研究中识别出的亚型相似的临床特征?

方法

我们尽可能密切地遵循原始程序,包括使用典型相关分析找到与临床相关静息状态 fMRI 特征的低维表示,然后进行层次聚类以识别亚型。我们使用额外的统计测试扩展了原始程序,以测试静息状态 fMRI 与临床数据之间关系的统计学意义和存在独特的亚型。此外,我们通过重新采样检查了整个过程的稳定性。

结果与结论

与原始研究一样,我们发现功能连接与临床症状之间存在极高的典型相关性,并且存在最佳的三聚类解决方案。然而,无论是典型相关性还是聚类都没有统计学意义。基于我们对所使用分析方法的广泛评估以及相对于 Drysdale 等人使用的样本比较我们的样本的限制,我们认为,存在明显的基于静息状态连通性的抑郁亚型的证据应谨慎解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae0a/6543446/081a1d136656/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验