文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

γ-氨基丁酸能神经元可促进皮层扩展性去极化的传播:小鼠新皮层切片实验及新型神经场计算模型

GABAergic neurons can facilitate the propagation of cortical spreading depolarization: experiments in mouse neocortical slices and a novel neural field computational model.

作者信息

Baspinar Emre, Simonti Martina, Srour Hadi, Desroches Mathieu, Avitabile Daniele, Mantegazza Massimo

机构信息

MathNeuro Team, Inria Branch of the University of Montpellier, Montpellier, France.

Université de Montpellier, Montpellier, France.

出版信息

PLoS Comput Biol. 2025 Jun 4;21(6):e1013099. doi: 10.1371/journal.pcbi.1013099. eCollection 2025 Jun.


DOI:10.1371/journal.pcbi.1013099
PMID:40465585
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12136302/
Abstract

Cortical spreading depolarization (CSD) is a wave of depolarization with local onset and extended propagation implicated in several pathological conditions. Its mechanisms have been extensively investigated, including our recent studies showing with experimental and computational approaches that the hyperactivity of GABAergic neurons' can initiate migraine-related CSD because of spiking-generated extracellular potassium ([Formula: see text]) build-up. However, less is known about the role played by GABAergic neurons in CSD propagation. Here we studied mechanisms of CSD propagation, focusing on the role of GABAergic neurons, with experiments performed in mouse brain slices and with a new spatially extended neural field computational model. Experimentally, we induced CSD by applying brief puffs of potassium chloride (KCl) in somatosensory cortex slices from wild type and VGAT-ChR2-tdtomato mice, which specifically express the excitatory opsin channelrhodopsin (ChR2) in GABAergic neurons. We evaluated the role of GABAergic neurons in CSD propagation by modulating their activity with optogenetic illumination and their synaptic connections with pharmacological tools. We have developed the computational model to obtain realistic simulations of both initiation and propagation of CSD. It includes large populations of interconnected excitatory and inhibitory neurons, as well as the effect of extracellular ion concentrations on their features. We found that the decrease of the synaptic activity of GABAergic neurons can enhance CSD propagation, because of the reduction of the inhibitory synaptic weight, whereas their spiking activity can enhance CSD propagation because of extracellular [Formula: see text] upload. However, differently than for CSD initiation, the latter effect is normally hidden by the action of GABAergic synaptic transmission. A reduction of GABAergic synaptic transmission, which can be observed in pathological states, can reveal the potentiating effect of the [Formula: see text] upload induced by GABAergic activation. The neural field model that we implemented can generate accurate simulations of CSD, providing testable hypotheses on mechanisms, and can also be used for modeling other (patho)-physiological activities of neuronal networks.

摘要

皮层扩散性去极化(CSD)是一种去极化波,起始于局部并扩展传播,与多种病理状况有关。其机制已得到广泛研究,包括我们最近的研究,通过实验和计算方法表明,GABA能神经元的过度活跃可因动作电位产生的细胞外钾离子([公式:见正文])积累而引发偏头痛相关的CSD。然而,关于GABA能神经元在CSD传播中所起的作用,人们了解较少。在这里,我们通过在小鼠脑片上进行实验以及使用一种新的空间扩展神经场计算模型,研究了CSD传播的机制,重点关注GABA能神经元的作用。在实验中,我们通过在野生型和VGAT-ChR2-tdTomato小鼠的体感皮层切片中短暂施加氯化钾(KCl)来诱导CSD,这些小鼠在GABA能神经元中特异性表达兴奋性视蛋白通道视紫红质(ChR2)。我们通过光遗传学照明调节其活性以及使用药理学工具调节其突触连接,来评估GABA能神经元在CSD传播中的作用。我们开发了计算模型,以获得CSD起始和传播的真实模拟。它包括大量相互连接的兴奋性和抑制性神经元,以及细胞外离子浓度对其特性的影响。我们发现,GABA能神经元突触活动的降低可增强CSD传播,这是由于抑制性突触权重的降低,而它们的动作电位活动可因细胞外[公式:见正文]上传而增强CSD传播。然而,与CSD起始不同的是,后一种效应通常被GABA能突触传递的作用所掩盖。在病理状态下可观察到的GABA能突触传递的减少,可揭示GABA能激活诱导的[公式:见正文]上传的增强作用。我们实现的神经场模型可以生成CSD的精确模拟,提供关于机制的可测试假设,并且还可用于模拟神经网络的其他(病理)生理活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/3467b066f5da/pcbi.1013099.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/c995e97f11f0/pcbi.1013099.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/66c59500f9f0/pcbi.1013099.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/4d9d6cfa8314/pcbi.1013099.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/ef3f143add31/pcbi.1013099.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/ed2ac5782088/pcbi.1013099.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/333c5e8d8f80/pcbi.1013099.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/7ced9cad283e/pcbi.1013099.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/3af9554a2162/pcbi.1013099.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/74ca683f16e3/pcbi.1013099.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/3467b066f5da/pcbi.1013099.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/c995e97f11f0/pcbi.1013099.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/66c59500f9f0/pcbi.1013099.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/4d9d6cfa8314/pcbi.1013099.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/ef3f143add31/pcbi.1013099.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/ed2ac5782088/pcbi.1013099.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/333c5e8d8f80/pcbi.1013099.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/7ced9cad283e/pcbi.1013099.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/3af9554a2162/pcbi.1013099.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/74ca683f16e3/pcbi.1013099.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8458/12136302/3467b066f5da/pcbi.1013099.g010.jpg

相似文献

[1]
GABAergic neurons can facilitate the propagation of cortical spreading depolarization: experiments in mouse neocortical slices and a novel neural field computational model.

PLoS Comput Biol. 2025-6-4

[2]
Modeling NaV1.1/SCN1A sodium channel mutations in a microcircuit with realistic ion concentration dynamics suggests differential GABAergic mechanisms leading to hyperexcitability in epilepsy and hemiplegic migraine.

PLoS Comput Biol. 2021-7-27

[3]
Initiation of migraine-related cortical spreading depolarization by hyperactivity of GABAergic neurons and NaV1.1 channels.

J Clin Invest. 2021-11-1

[4]
Cholinergic modulation inhibits cortical spreading depression in mouse neocortex through activation of muscarinic receptors and decreased excitatory/inhibitory drive.

Neuropharmacology. 2020-4

[5]
Sequential changes in neuronal activity in single neocortical neurons after spreading depression.

Cephalalgia. 2011-12-15

[6]
Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex.

J Neurophysiol. 2012-3-7

[7]
An Optogenetic Approach for Investigation of Excitatory and Inhibitory Network GABA Actions in Mice Expressing Channelrhodopsin-2 in GABAergic Neurons.

J Neurosci. 2016-6-1

[8]
Effects of garlic extract on spreading depression: In vitro and in vivo investigations.

Nutr Neurosci. 2017-2

[9]
Specific activation of GluN1-N2B NMDA receptors underlies facilitation of cortical spreading depression in a genetic mouse model of migraine with reduced astrocytic glutamate clearance.

Neurobiol Dis. 2021-8

[10]
In vivo optogenetic stimulation of neocortical excitatory neurons drives brain-state-dependent inhibition.

Curr Biol. 2011-9-22

本文引用的文献

[1]
Traveling waves in a model for cortical spreading depolarization with slow-fast dynamics.

Chaos. 2023-8-1

[2]
Voltage-gated sodium channels in genetic epilepsy: up and down of excitability.

J Neurochem. 2024-12

[3]
A spatially distributed model of brain metabolism highlights the role of diffusion in brain energy metabolism.

J Theor Biol. 2023-9-7

[4]
Idealized multiple-timescale model of cortical spreading depolarization initiation and pre-epileptic hyperexcitability caused by Na1.1/SCN1A mutations.

J Math Biol. 2023-5-12

[5]
Multiscale Computer Modeling of Spreading Depolarization in Brain Slices.

eNeuro. 2022

[6]
Validating a Computational Framework for Ionic Electrodiffusion with Cortical Spreading Depression as a Case Study.

eNeuro. 2022-4-25

[7]
Initiation of migraine-related cortical spreading depolarization by hyperactivity of GABAergic neurons and NaV1.1 channels.

J Clin Invest. 2021-11-1

[8]
Astrocytes mediate migraine-related intracranial meningeal mechanical hypersensitivity.

Pain. 2021-9-1

[9]
Modeling NaV1.1/SCN1A sodium channel mutations in a microcircuit with realistic ion concentration dynamics suggests differential GABAergic mechanisms leading to hyperexcitability in epilepsy and hemiplegic migraine.

PLoS Comput Biol. 2021-7-27

[10]
Parametric exploration of cellular swelling in a computational model of cortical spreading depression.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索