Suppr超能文献

基于机器学习的口腔内超声图像中牙骨质-釉质界的定位。

Localization of cementoenamel junction in intraoral ultrasonographs with machine learning.

机构信息

Department of Radiology & Diagnostic Imaging, University of Alberta, Edmonton, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, Canada.

Department of Radiology & Diagnostic Imaging, University of Alberta, Edmonton, Canada; Department of Computer Sciences, University of Science, Ho Chi Minh City, Vietnam.

出版信息

J Dent. 2021 Sep;112:103752. doi: 10.1016/j.jdent.2021.103752. Epub 2021 Jul 24.

Abstract

OBJECTIVE

Our goal was to automatically identify the cementoenamel junction (CEJ) location in ultrasound images using deep convolution neural networks (CNNs).

METHODS

Three CNNs were evaluated using 1400 images and data augmentation. The training and validation were performed by an experienced nonclinical rater with 1000 and 200 images, respectively. Four clinical raters with different levels of experience with ultrasound tested the networks using the other 200 images. In addition to the comparison of the best approach with each rater, we also employed the simultaneous truth and performance level estimation (STAPLE) algorithm to estimate a ground truth based on all labelings by four clinical raters. The final CEJ location estimate was obtained by taking the first moment of the posterior probability computed using the STAPLE algorithm. The study also computed the machine learning-measured CEJ-alveolar bone crest distance.

RESULTS

Quantitative evaluations of the 200 images showed that the comparison of the best approach with the STAPLE-estimate yielded a mean difference (MD) of 0.26 mm, which is close to the comparison with the most experienced nonclinical rater (MD=0.25 mm) but far better than the comparison with clinical raters (MD=0.27-0.33 mm). The machine learning-measured CEJ-alveolar bone crest distances correlated strongly (R = 0.933, p < 0.001) with the manual clinical labeling and the measurements were in good agreement with the 95% Bland-Altman's lines of agreement between -0.68 and 0.57 mm.

CONCLUSIONS

The study demonstrated the feasible use of machine learning methodology to localize CEJ in ultrasound images with clinically acceptable accuracy and reliability. Likelihood-weighted ground truth by combining multiple labels by the clinical experts compared favorably with the predictions by the best deep CNN approach.

CLINICAL SIGNIFICANCE

Identification of CEJ and its distance from the alveolar bone crest play an important role in the evaluation of periodontal status. Machine learning algorithms can learn from complex features in ultrasound images and have potential to provide a reliable and accurate identification in subsecond. This will greatly assist dental practitioners to provide better point-of-care to patients and enhance the throughput of dental care.

摘要

目的

本研究旨在使用深度卷积神经网络(CNN)自动识别超声图像中的牙骨质-釉质界(CEJ)位置。

方法

使用 1400 张图像和数据增强对 3 个 CNN 进行评估。训练和验证由一位经验丰富的非临床评估员完成,分别使用 1000 张和 200 张图像。4 位具有不同超声经验的临床评估员使用其余的 200 张图像测试网络。除了比较每个评估员的最佳方法外,我们还使用同时真实性和性能水平估计(STAPLE)算法,根据 4 位临床评估员的所有标注来估计一个真实位置。通过使用 STAPLE 算法计算的后验概率的第一时刻来获得最终的 CEJ 位置估计。该研究还计算了机器学习测量的 CEJ-牙槽骨嵴距离。

结果

对 200 张图像的定量评估显示,与 STAPLE 估计值的最佳方法比较,平均差值(MD)为 0.26mm,这接近与最有经验的非临床评估员(MD=0.25mm)的比较,但远优于与临床评估员(MD=0.27-0.33mm)的比较。机器学习测量的 CEJ-牙槽骨嵴距离与手动临床标注高度相关(R=0.933,p<0.001),且与 95%的 Bland-Altman 一致性界限(-0.68 至 0.57mm)之间的测量结果一致。

结论

本研究表明,使用机器学习方法在超声图像中定位 CEJ 具有临床可接受的准确性和可靠性。通过多位临床专家对多个标注进行加权似然的地面真实值,其预测结果明显优于最佳深度 CNN 方法的预测结果。

临床意义

CEJ 的识别及其与牙槽骨嵴的距离在牙周状况的评估中起着重要作用。机器学习算法可以从超声图像的复杂特征中学习,并有可能在亚秒级内提供可靠和准确的识别。这将极大地帮助牙科医生为患者提供更好的即时护理,并提高牙科护理的效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验