Suppr超能文献

使用深度学习对光学相干断层扫描(OCT)图像中的牙槽骨水平进行自动定量测量。

Automatic and quantitative measurement of alveolar bone level in OCT images using deep learning.

作者信息

Kim Sul-Hee, Kim Jin, Yang Su, Oh Sung-Hye, Lee Seung-Pyo, Yang Hoon Joo, Kim Tae-Il, Yi Won-Jin

机构信息

Department of Periodontology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea.

These authors contributed equally as the first author.

出版信息

Biomed Opt Express. 2022 Sep 26;13(10):5468-5482. doi: 10.1364/BOE.468212. eCollection 2022 Oct 1.

Abstract

We propose a method to automatically segment the periodontal structures of the tooth enamel and the alveolar bone using convolutional neural network (CNN) and to measure quantitatively and automatically the alveolar bone level (ABL) by detecting the cemento-enamel junction and the alveolar bone crest in optical coherence tomography (OCT) images. The tooth enamel and the alveolar bone regions were automatically segmented using U-Net, Dense-UNet, and U-Net, and the ABL was quantitatively measured as the distance between the cemento-enamel junction and the alveolar bone crest using image processing. The mean distance difference (MDD) measured by our suggested method ranged from 0.19 to 0.22 mm for the alveolar bone crest (ABC) and from 0.18 to 0.32 mm for the cemento-enamel junction (CEJ). All CNN models showed the mean absolute error (MAE) of less than 0.25 mm in the and coordinates and greater than 90% successful detection rate (SDR) at 0.5 mm for both the ABC and the CEJ. The CNN models showed high segmentation accuracies in the tooth enamel and the alveolar bone regions, and the ABL measurements at the incisors by detected results from CNN predictions demonstrated high correlation and reliability with the ground truth in OCT images.

摘要

我们提出了一种使用卷积神经网络(CNN)自动分割牙釉质和牙槽骨的牙周结构的方法,并通过在光学相干断层扫描(OCT)图像中检测牙骨质-釉质界和牙槽嵴来定量和自动测量牙槽骨水平(ABL)。使用U-Net、密集U-Net自动分割牙釉质和牙槽骨区域,并通过图像处理将ABL定量测量为牙骨质-釉质界与牙槽嵴之间的距离。我们建议的方法测量的平均距离差(MDD)对于牙槽嵴(ABC)为0.19至0.22毫米,对于牙骨质-釉质界(CEJ)为0.18至0.32毫米。所有CNN模型在x和y坐标上的平均绝对误差(MAE)均小于0.25毫米,对于ABC和CEJ在0.5毫米处的成功检测率(SDR)均大于90%。CNN模型在牙釉质和牙槽骨区域显示出较高的分割精度,并且通过CNN预测的检测结果对切牙处ABL的测量与OCT图像中的真实情况显示出高度的相关性和可靠性。

相似文献

5
Estimation of Alveolar Bone Loss in Periodontitis Using Machine Learning.利用机器学习估算牙周炎的牙槽骨损失
Int Dent J. 2022 Oct;72(5):621-627. doi: 10.1016/j.identj.2022.02.009. Epub 2022 May 13.

引用本文的文献

3
Alveolar bone loss is associated with oral cancer: a case-control study.牙槽骨吸收与口腔癌相关:一项病例对照研究。
Front Oral Health. 2025 May 9;6:1569491. doi: 10.3389/froh.2025.1569491. eCollection 2025.

本文引用的文献

3
Loss odyssey in medical image segmentation.医学图像分割中的损失奥德赛。
Med Image Anal. 2021 Jul;71:102035. doi: 10.1016/j.media.2021.102035. Epub 2021 Mar 19.
7
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验