Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
Nat Commun. 2021 Jul 27;12(1):4563. doi: 10.1038/s41467-021-24814-1.
The emergence and spread of Plasmodium falciparum parasites resistant to front-line antimalarial artemisinin-combination therapies (ACT) threatens to erase the considerable gains against the disease of the last decade. Here, we develop a large-scale phenotypic screening pipeline and use it to carry out a large-scale forward-genetic phenotype screen in P. falciparum to identify genes allowing parasites to survive febrile temperatures. Screening identifies more than 200 P. falciparum mutants with differential responses to increased temperature. These mutants are more likely to be sensitive to artemisinin derivatives as well as to heightened oxidative stress. Major processes critical for P. falciparum tolerance to febrile temperatures and artemisinin include highly essential, conserved pathways associated with protein-folding, heat shock and proteasome-mediated degradation, and unexpectedly, isoprenoid biosynthesis, which originated from the ancestral genome of the parasite's algal endosymbiont-derived plastid, the apicoplast. Apicoplast-targeted genes in general are upregulated in response to heat shock, as are other Plasmodium genes with orthologs in plant and algal genomes. Plasmodium falciparum parasites appear to exploit their innate febrile-response mechanisms to mediate resistance to artemisinin. Both responses depend on endosymbiont-derived genes in the parasite's genome, suggesting a link to the evolutionary origins of Plasmodium parasites in free-living ancestors.
疟原虫对一线抗疟青蒿素联合疗法(ACT)产生抗药性并传播,这有可能使过去十年在防治疟疾方面取得的显著成果付诸东流。在这里,我们开发了一种大规模表型筛选管道,并利用它对恶性疟原虫进行了大规模正向遗传表型筛选,以鉴定允许寄生虫在发热温度下存活的基因。筛选出 200 多个对温度升高有不同反应的恶性疟原虫突变体。这些突变体更容易对青蒿素衍生物以及氧化应激敏感。对发热温度和青蒿素具有耐受性的恶性疟原虫的关键过程包括与蛋白质折叠、热休克和蛋白酶体介导的降解相关的高度必需的保守途径,以及出乎意料的异戊二烯生物合成途径,该途径源自寄生虫藻类内共生体衍生质体(叶绿体)的祖先基因组。通常,质体靶向基因在受热激时上调,植物和藻类基因组中的其他疟原虫基因也是如此。恶性疟原虫寄生虫似乎利用其先天的发热反应机制来介导对青蒿素的耐药性。这两种反应都依赖于寄生虫基因组中内共生体衍生的基因,这表明与寄生虫在自由生活祖先中的进化起源有关。