Janczak Colleen M, Calderon Isen A C, Noviana Eka, Hadvani Priyanka, Lee Joo Ryung, Aspinwall Craig A
Department of Chemistry and Biochemistry, University of Arizona, Tucson 85721-00041, United States.
BIO5 Institute, University of Arizona, Tucson 85721-00041, United States.
ACS Appl Nano Mater. 2019 Mar 22;2(3):1259-1266. doi: 10.1021/acsanm.8b02136. Epub 2019 Feb 20.
β-particle emitting radionuclides, such as H, C, P, P, and S, are important molecular labels due to their small size and the prevalence of these atoms in biomolecules but are challenging to selectively detect and quantify within aqueous biological samples and systems. Here, we present a core-shell nanoparticle-based scintillation proximity assay platform (nanoSPA) for the separation-free, selective detection of radiolabeled analytes. nanoSPA is prepared by incorporating scintillant fluorophores into polystyrene core particles and encapsulating the scintillant-doped cores within functionalized silica shells. The functionalized surface enables covalent attachment of specific binding moieties such as small molecules, proteins, or DNA that can be used for analyte-specific detection. nanoSPA was demonstrated for detection of H-labeled analytes, the most difficult biologically relevant β-emitter to measure due to the low energy β-particle emission, using three model assays that represent covalent and non-covalent binding systems that necessitate selectivity over competing H-labeled species. In each model, nmol quantities of target were detected directly in aqueous solution without separation from unbound H-labeled analyte. The nanoSPA platform facilitated measurement of H-labeled analytes directly in bulk aqueous samples without surfactants or other agents used to aid particle dispersal. Selectivity for bound H-analytes over unbound H analytes was enhanced up to 30-fold when the labeled species was covalently bound to nanoSPA, and 4- and 8-fold for two non-covalent binding assays using nanoSPA. The small size and enhanced selectivity of nanoSPA should enable new applications compared to the commonly used microSPA platform, including the potential for separation-free, analyte-specific cellular or intracellular detection.
发射β粒子的放射性核素,如氢(H)、碳(C)、磷(P)、磷(P)和硫(S),由于其尺寸小且这些原子在生物分子中普遍存在,是重要的分子标记物,但在水性生物样品和系统中选择性检测和定量具有挑战性。在此,我们提出了一种基于核壳纳米颗粒的闪烁邻近分析平台(nanoSPA),用于无分离地选择性检测放射性标记的分析物。nanoSPA是通过将闪烁荧光团掺入聚苯乙烯核心颗粒中,并将掺杂闪烁剂的核心封装在功能化二氧化硅壳内制备而成。功能化表面能够实现特定结合部分(如小分子、蛋白质或DNA)的共价连接,这些结合部分可用于分析物特异性检测。使用三种代表共价和非共价结合系统的模型分析,证明了nanoSPA可用于检测H标记的分析物,由于β粒子发射能量低,H是最难测量的与生物学相关的β发射体,这些模型分析需要对竞争性H标记物种具有选择性。在每个模型中,无需从未结合的H标记分析物中分离,就能直接在水溶液中检测到纳摩尔量的目标物。nanoSPA平台有助于直接在大量水性样品中测量H标记的分析物,无需使用表面活性剂或其他有助于颗粒分散的试剂。当标记物种与nanoSPA共价结合时,对结合的H分析物相对于未结合的H分析物的选择性提高了30倍,对于使用nanoSPA的两种非共价结合分析,选择性提高了4倍和8倍。与常用的微SPA平台相比,nanoSPA的小尺寸和增强的选择性应能实现新的应用,包括无分离、分析物特异性细胞或细胞内检测的潜力。