Suppr超能文献

基于学习的觅食蜜蜂之间资源分配模型。

A model of resource partitioning between foraging bees based on learning.

机构信息

Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI); CNRS, University Paul Sabatier-Toulouse III, Toulouse, France.

Department of Biological Sciences, Macquarie University, Sydney, Australia.

出版信息

PLoS Comput Biol. 2021 Jul 28;17(7):e1009260. doi: 10.1371/journal.pcbi.1009260. eCollection 2021 Jul.

Abstract

Central place foraging pollinators tend to develop multi-destination routes (traplines) to exploit patchily distributed plant resources. While the formation of traplines by individual pollinators has been studied in detail, how populations of foragers use resources in a common area is an open question, difficult to address experimentally. We explored conditions for the emergence of resource partitioning among traplining bees using agent-based models built from experimental data of bumblebees foraging on artificial flowers. In the models, bees learn to develop routes as a consequence of feedback loops that change their probabilities of moving between flowers. While a positive reinforcement of movements leading to rewarding flowers is sufficient for the emergence of resource partitioning when flowers are evenly distributed, the addition of a negative reinforcement of movements leading to unrewarding flowers is necessary when flowers are patchily distributed. In environments with more complex spatial structures, the negative experiences of individual bees on flowers favour spatial segregation and efficient collective foraging. Our study fills a major gap in modelling pollinator behaviour and constitutes a unique tool to guide future experimental programs.

摘要

中心位置觅食的传粉者往往会形成多目的地的路线(陷阱线)来利用分布不均的植物资源。虽然个体传粉者形成陷阱线的过程已经被详细研究过,但群体传粉者如何在一个共同区域中利用资源仍然是一个悬而未决的问题,难以通过实验解决。我们使用基于实验数据构建的基于主体的模型来探索在陷阱线传粉者中出现资源分割的条件,这些数据来自于熊蜂在人工花朵上觅食的实验。在模型中,蜜蜂通过反馈回路来学习形成路线,这些反馈回路改变了它们在花朵之间移动的概率。当花朵均匀分布时,正向激励导致奖励花朵的运动足以产生资源分割,而当花朵分布不均时,负向激励导致非奖励花朵的运动是必要的。在具有更复杂空间结构的环境中,个体蜜蜂在花朵上的负面经历有利于空间隔离和有效的集体觅食。我们的研究填补了传粉者行为建模的一个主要空白,是指导未来实验计划的独特工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6633/8351995/27528f57630f/pcbi.1009260.g001.jpg

相似文献

1
A model of resource partitioning between foraging bees based on learning.
PLoS Comput Biol. 2021 Jul 28;17(7):e1009260. doi: 10.1371/journal.pcbi.1009260. eCollection 2021 Jul.
2
Bumblebees learn foraging routes through exploitation-exploration cycles.
J R Soc Interface. 2019 Jul 26;16(156):20190103. doi: 10.1098/rsif.2019.0103. Epub 2019 Jul 10.
3
Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants.
Ann Bot. 2009 Jun;103(9):1365-78. doi: 10.1093/aob/mcp088. Epub 2009 Apr 26.
4
A simple iterative model accurately captures complex trapline formation by bumblebees across spatial scales and flower arrangements.
PLoS Comput Biol. 2013;9(3):e1002938. doi: 10.1371/journal.pcbi.1002938. Epub 2013 Mar 7.
5
Evidence of trapline foraging in honeybees.
J Exp Biol. 2016 Aug 15;219(Pt 16):2426-9. doi: 10.1242/jeb.143214. Epub 2016 Jun 15.
6
Inter-individual variability in the foraging behaviour of traplining bumblebees.
Sci Rep. 2017 Jul 4;7(1):4561. doi: 10.1038/s41598-017-04919-8.
8
Monitoring Flower Visitation Networks and Interactions between Pairs of Bumble Bees in a Large Outdoor Flight Cage.
PLoS One. 2016 Mar 16;11(3):e0150844. doi: 10.1371/journal.pone.0150844. eCollection 2016.
9
Bees do not use nearest-neighbour rules for optimization of multi-location routes.
Biol Lett. 2012 Feb 23;8(1):13-6. doi: 10.1098/rsbl.2011.0661. Epub 2011 Aug 17.

引用本文的文献

本文引用的文献

1
The complete plastome genome and its inference on the phylogenetic position of (Orchidaceae).
Mitochondrial DNA B Resour. 2019 Nov 13;4(2):3989-3990. doi: 10.1080/23802359.2019.1688699.
2
Reinforcement Learning Enables Resource Partitioning in Foraging Bats.
Curr Biol. 2020 Oct 19;30(20):4096-4102.e6. doi: 10.1016/j.cub.2020.07.079. Epub 2020 Aug 20.
3
Bumblebees adjust protein and lipid collection rules to the presence of brood.
Curr Zool. 2019 Aug;65(4):437-446. doi: 10.1093/cz/zoz026. Epub 2019 May 21.
4
Bumblebees learn foraging routes through exploitation-exploration cycles.
J R Soc Interface. 2019 Jul 26;16(156):20190103. doi: 10.1098/rsif.2019.0103. Epub 2019 Jul 10.
5
The Central Complex as a Potential Substrate for Vector Based Navigation.
Front Psychol. 2019 Apr 5;10:690. doi: 10.3389/fpsyg.2019.00690. eCollection 2019.
8
Behavioral flexibility promotes collective consistency in a social insect.
Sci Rep. 2018 Oct 26;8(1):15836. doi: 10.1038/s41598-018-33917-7.
10
Continuous Radar Tracking Illustrates the Development of Multi-destination Routes of Bumblebees.
Sci Rep. 2017 Dec 11;7(1):17323. doi: 10.1038/s41598-017-17553-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验