DTI-Voodoo:基于机器学习的交互网络和基于本体论的背景知识预测药物-靶点相互作用。

DTI-Voodoo: machine learning over interaction networks and ontology-based background knowledge predicts drug-target interactions.

机构信息

Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.

出版信息

Bioinformatics. 2021 Dec 11;37(24):4835-4843. doi: 10.1093/bioinformatics/btab548.

Abstract

MOTIVATION

In silico drug-target interaction (DTI) prediction is important for drug discovery and drug repurposing. Approaches to predict DTIs can proceed indirectly, top-down, using phenotypic effects of drugs to identify potential drug targets, or they can be direct, bottom-up and use molecular information to directly predict binding affinities. Both approaches can be combined with information about interaction networks.

RESULTS

We developed DTI-Voodoo as a computational method that combines molecular features and ontology-encoded phenotypic effects of drugs with protein-protein interaction networks, and uses a graph convolutional neural network to predict DTIs. We demonstrate that drug effect features can exploit information in the interaction network whereas molecular features do not. DTI-Voodoo is designed to predict candidate drugs for a given protein; we use this formulation to show that common DTI datasets contain intrinsic biases with major effects on performance evaluation and comparison of DTI prediction methods. Using a modified evaluation scheme, we demonstrate that DTI-Voodoo improves significantly over state of the art DTI prediction methods.

AVAILABILITY AND IMPLEMENTATION

DTI-Voodoo source code and data necessary to reproduce results are freely available at https://github.com/THinnerichs/DTI-VOODOO.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

计算药物-靶标相互作用(DTI)预测对于药物发现和药物再利用非常重要。预测 DTIs 的方法可以间接、自上而下进行,使用药物的表型效应来识别潜在的药物靶点,也可以直接、自下而上,利用分子信息直接预测结合亲和力。这两种方法都可以与关于相互作用网络的信息相结合。

结果

我们开发了 DTI-Voodoo 作为一种计算方法,它将药物的分子特征和本体编码的表型效应与蛋白质-蛋白质相互作用网络相结合,并使用图卷积神经网络来预测 DTI。我们证明药物效应特征可以利用相互作用网络中的信息,而分子特征则不能。DTI-Voodoo 旨在预测给定蛋白质的候选药物;我们使用这种配方表明,常见的 DTI 数据集包含内在偏差,对性能评估和 DTI 预测方法的比较有重大影响。使用修改后的评估方案,我们证明 DTI-Voodoo 显著优于最先进的 DTI 预测方法。

可用性和实现

DTI-Voodoo 的源代码和重现结果所需的数据可在 https://github.com/THinnerichs/DTI-VOODOO 上免费获得。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b0b/8665763/3faf51ed0951/btab548f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索