Guo Maoni, Wang San Ming
Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China.
Front Cell Dev Biol. 2021 Jul 12;9:701073. doi: 10.3389/fcell.2021.701073. eCollection 2021.
Triple-negative breast cancer (TNBC) is an aggressive disease. Recent studies have identified genome instability-derived genes for patient outcomes. However, most of the studies mainly focused on only one or a few genome instability-related genes. Prognostic potential and clinical significance of genome instability-associated genes in TNBC have not been well explored.
In this study, we developed a computational approach to identify TNBC prognostic signature. It consisted of (1) using somatic mutations and copy number variations (CNVs) in TNBC to build a binary matrix and identifying the top and bottom 25% mutated samples, (2) comparing the gene expression between the top and bottom 25% samples to identify genome instability-related genes, and (3) performing univariate Cox proportional hazards regression analysis to identify survival-associated gene signature, and Kaplan-Meier, log-rank test, and multivariate Cox regression analyses to obtain overall survival (OS) information for TNBC outcome prediction.
From the identified 111 genome instability-related genes, we extracted a genome instability-derived gene signature (GIGenSig) of 11 genes. Through survival analysis, we were able to classify TNBC cases into high- and low-risk groups by the signature in the training dataset (log-rank test = 2.66e-04), validated its prognostic performance in the testing (log-rank test = 2.45e-02) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (log-rank test = 2.57e-05) datasets, and further validated the predictive power of the signature in five independent datasets.
The identified novel signature provides a better understanding of genome instability in TNBC and can be applied as prognostic markers for clinical TNBC management.
三阴性乳腺癌(TNBC)是一种侵袭性疾病。最近的研究已经确定了与患者预后相关的基因组不稳定衍生基因。然而,大多数研究主要只关注一个或几个与基因组不稳定相关的基因。TNBC中与基因组不稳定相关基因的预后潜力和临床意义尚未得到充分探索。
在本研究中,我们开发了一种计算方法来识别TNBC预后特征。它包括:(1)利用TNBC中的体细胞突变和拷贝数变异(CNV)构建二元矩阵,并识别突变样本中前25%和后25%的样本;(2)比较前25%和后25%样本之间的基因表达,以识别与基因组不稳定相关的基因;(3)进行单变量Cox比例风险回归分析,以识别与生存相关的基因特征,并进行Kaplan-Meier分析、对数秩检验和多变量Cox回归分析,以获取TNBC预后预测的总生存(OS)信息。
从鉴定出已知的111个与基因组不稳定相关的基因中,我们提取了一个由11个基因组成的基因组不稳定衍生基因特征(GIGenSig)。通过生存分析,我们能够在训练数据集中根据该特征将TNBC病例分为高风险组和低风险组(对数秩检验 = 2.66e-04),并在测试数据集(对数秩检验 = 2.45e-02)和国际乳腺癌分子分类联盟(METABRIC)数据集(对数秩检验 = 2.57e-05)中验证其预后性能,还在五个独立数据集中进一步验证了该特征的预测能力。
鉴定出的新特征有助于更好地理解TNBC中的基因组不稳定,可作为临床TNBC管理的预后标志物。