Suppr超能文献

用于INS/UWB集成无缝四旋翼定位的神经网络辅助卡尔曼滤波器

Neural network assisted Kalman filter for INS/UWB integrated seamless quadrotor localization.

作者信息

Bi Shuhui, Ma Liyao, Shen Tao, Xu Yuan, Li Fukun

机构信息

School of Electrical Engineering, University of Jinan, Jinan, Shandong, China.

出版信息

PeerJ Comput Sci. 2021 Jul 14;7:e630. doi: 10.7717/peerj-cs.630. eCollection 2021.

Abstract

Due to some harsh indoor environments, the signal of the ultra wide band (UWB) may be lost, which makes the data fusion filter can not work. For overcoming this problem, the neural network (NN) assisted Kalman filter (KF) for fusing the UWB and the inertial navigation system (INS) data seamlessly is present in this work. In this approach, when the UWB data is available, both the UWB and the INS are able to provide the position information of the quadrotor, and thus, the KF is used to provide the localization information by the fusion of position difference between the INS and the UWB, meanwhile, the KF can provide the estimation of the INS position error, which is able to assist the NN to build the mapping between the state vector and the measurement vector off-line. The NN can estimate the KF's measurement when the UWB data is unavailable. For confirming the effectiveness of the proposed method, one real test has been done. The test's results demonstrate that the proposed NN assisted KF is effective to the fusion of INS and UWB data seamlessly, which shows obvious improvement of localization accuracy. Compared with the LS-SVM assisted KF, the proposed NN assisted KF is able to reduce the localization error by about 54.34%.

摘要

由于一些恶劣的室内环境,超宽带(UWB)信号可能会丢失,这使得数据融合滤波器无法工作。为了克服这个问题,本文提出了一种神经网络(NN)辅助卡尔曼滤波器(KF),用于无缝融合UWB和惯性导航系统(INS)的数据。在这种方法中,当UWB数据可用时,UWB和INS都能够提供四旋翼的位置信息,因此,KF通过融合INS和UWB之间的位置差来提供定位信息,同时,KF可以提供INS位置误差的估计,这有助于NN离线建立状态向量和测量向量之间的映射。当UWB数据不可用时,NN可以估计KF的测量值。为了验证所提方法的有效性,进行了一次实际测试。测试结果表明,所提的NN辅助KF对于INS和UWB数据的无缝融合是有效的,定位精度有明显提高。与最小二乘支持向量机(LS-SVM)辅助KF相比,所提的NN辅助KF能够将定位误差降低约54.34%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6290/8293925/cec6e287a227/peerj-cs-07-630-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验