Univeristy of Ottawa Heart Institute, Ottawa, Ontario, Canada.
Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, Delhi, India.
J Cell Biochem. 2021 Nov;122(11):1686-1700. doi: 10.1002/jcb.30114. Epub 2021 Jul 28.
Mitochondria and peroxisomes are metabolically interconnected and functionally active subcellular organelles. These two dynamic organelles, share a number of common biochemical functions such as β-oxidation of fatty acids and detoxification of peroxides. The biogenesis and morphology of both these organelles in the mammalian cells is controlled by common transcription factors like PGC1α, and by a common fission machinery comprising of fission proteins like DRP1, Mff, and hFis1, respectively. In addition, the outer membrane mitochondria-anchored protein ligase (MAPL), the first mitochondrial SUMO E3 ligase with a RING-finger domain, also regulates mitochondrial morphology inducing mitochondrial fragmentation upon its overexpression. This fragmentation is dependent on both the RING domain of MAPL and the presence of the mitochondrial fission GTPase dynamin-related protein-1 (DRP1). Earlier studies have demonstrated that mitochondrial-derived vesicles are formed independently of the known mitochondrial fission GTPase, DRP1 are enriched for MAPL and are targeted to peroxisomes. The current study shows that MAPL regulates morphology of peroxisomes in a cell-type specific manner. Fascinatingly, the peroxisome elongation caused either due to silencing of DRP1 or by addition of polyunsaturated fatty acid, docosahexaenoic acid was blocked by overexpressing MAPL in mammalian cell lines. Furthermore, the transfection and colocalisation studies of MAPL with peroxisome membrane marker, PMP70, in different cell lines clearly revealed a cell-type specificity of transport of MAPL to peroxisomes. Previous work has placed the Vps35 (retromer component) as vital for delivery of MAPL to peroxisomes, placing the retromer as critical for the formation of MAPL-positive mitochondrial-derived vesicles. The results of polyethylene glycol-based cell-cell fusion assay signified that the enrichment of MAPL in peroxisomes is through vesicles and a retromer dependent phenomenon. Thus, a novel function for MAPL in peroxisomes is established to regulate peroxisome elongation and morphology under growth conditions and thus possibly modulate peroxisome fission.
线粒体和过氧化物酶体在代谢上相互关联,在功能上是活跃的亚细胞细胞器。这两个动态细胞器有许多共同的生化功能,如脂肪酸的β氧化和过氧化物的解毒。哺乳动物细胞中这两种细胞器的生物发生和形态由共同的转录因子(如 PGC1α)和共同的分裂机制控制,该机制由分裂蛋白(如 DRP1、Mff 和 hFis1)组成。此外,外膜线粒体锚定蛋白连接酶(MAPL),即第一个具有 RING 指结构域的线粒体 SUMO E3 连接酶,也通过其过表达诱导线粒体片段化来调节线粒体形态。这种片段化既依赖于 MAPL 的 RING 结构域,也依赖于线粒体分裂 GTP 酶 dynamin 相关蛋白-1(DRP1)的存在。早期的研究表明,线粒体衍生小泡的形成独立于已知的线粒体分裂 GTP 酶 DRP1,MAPL 富含线粒体衍生小泡,并靶向过氧化物酶体。本研究表明,MAPL 以细胞类型特异性的方式调节过氧化物酶体的形态。有趣的是,由于 DRP1 的沉默或多不饱和脂肪酸二十二碳六烯酸的添加而导致的过氧化物酶体伸长被哺乳动物细胞系中 MAPL 的过表达所阻断。此外,在不同细胞系中转染和共定位 MAPL 与过氧化物酶体膜标记物 PMP70 的研究清楚地揭示了 MAPL 向过氧化物酶体的运输具有细胞类型特异性。先前的工作将 Vps35(retromer 成分)作为将 MAPL 递送至过氧化物酶体的关键,将 retromer 作为形成 MAPL 阳性线粒体衍生小泡的关键。聚乙二醇基细胞-细胞融合测定的结果表明,MAPL 在过氧化物酶体中的富集是通过小泡和 retromer 依赖的现象。因此,MAPL 在过氧化物酶体中的新功能是在生长条件下调节过氧化物酶体的伸长和形态,从而可能调节过氧化物酶体的分裂。